In this paper we develop a monotonicity formula for elliptic systems with Neumann boundary coupling, proving unique continuation and classification of blow-up profiles. As an application, we obtain strong unique continuation for some fourth order equations and higher order fractional problems.

Felli, V., Ferrero, A. (2020). Unique continuation and classification of blow-up profiles for elliptic systems with Neumann boundary coupling and applications to higher order fractional equations. NONLINEAR ANALYSIS, 196(July 2020) [10.1016/j.na.2020.111826].

Unique continuation and classification of blow-up profiles for elliptic systems with Neumann boundary coupling and applications to higher order fractional equations

Felli V.;Ferrero A.
2020

Abstract

In this paper we develop a monotonicity formula for elliptic systems with Neumann boundary coupling, proving unique continuation and classification of blow-up profiles. As an application, we obtain strong unique continuation for some fourth order equations and higher order fractional problems.
Articolo in rivista - Articolo scientifico
Higher order fractional problems; Monotonicity formula; Neumann boundary coupling; Unique continuation;
English
29-feb-2020
2020
196
July 2020
111826
partially_open
Felli, V., Ferrero, A. (2020). Unique continuation and classification of blow-up profiles for elliptic systems with Neumann boundary coupling and applications to higher order fractional equations. NONLINEAR ANALYSIS, 196(July 2020) [10.1016/j.na.2020.111826].
File in questo prodotto:
File Dimensione Formato  
Felli-2020-Non Linear Analysis-AAM.pdf

accesso aperto

Descrizione: Research Article
Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Licenza: Creative Commons
Dimensione 421.34 kB
Formato Adobe PDF
421.34 kB Adobe PDF Visualizza/Apri
Felli-2020-NonlinearAnalysis-VoR.pdf

Solo gestori archivio

Descrizione: Publisher’s Version
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 1.19 MB
Formato Adobe PDF
1.19 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/268387
Citazioni
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
Social impact