Background: Associative plasticity, the neurophysiological bases of Hebbian learning, has been implied in the formation of the association between sensory and motor representations of actions in the Mirror Neuron System; however, such inductor role still needs empirical support. Objective/hypothesis: We have assessed whether Paired Associative Stimulation (PAS), known to activate Hebbian associative plasticity, can induce the formation of atypical (absent in normal conditions), visuo-motor associations, reshaping motor resonance. Methods: Healthy participants underwent a novel PAS protocol (mirror-PAS, m-PAS), during which they were exposed to repeated pairings of transcranial magnetic stimulation (TMS) applied over the right primary motor cortex (M1), time-locked with the view of index-finger movements of the right (ipsilateral) hand. In a first experiment, the inter-stimulus interval (ISI) between visual-action stimuli and TMS pulses was varied. Before and after each m-PAS session, motor resonance was assessed by recording Motor Evoked Potentials induced by single-pulse TMS applied to the right M1, during the observation of both contralateral (left) and ipsilateral (right) index-finger movements. In the second experiment, the specificity of the m-PAS was assessed by presenting a visual stimulus depicting a non-biological movement. Results: Before m-PAS, the facilitation of corticospinal excitability occurred only during the view of contralateral (with respect to the TMS side) index-finger movements. The m-PAS induced new ipsilateral motor resonance responses, indexed by atypical facilitation of corticospinal excitability by the view of ipsilateral hand movements. This effect occurred only if the associative stimulation followed the chronometry of motor control (ISI of 25 ms) and if the visual stimulus of the m-PAS depicts a biological movement (human hand action). Conclusions: The present findings provide the first empirical evidence that Hebbian learning induced by a PAS protocol shapes the visual-motor matching properties of the human Mirror Neuron System.

Guidali, G., Souza Carneiro, M., Bolognini, N. (2020). Paired Associative Stimulation drives the emergence of motor resonance. BRAIN STIMULATION, 13(3), 627-636 [10.1016/j.brs.2020.01.017].

Paired Associative Stimulation drives the emergence of motor resonance

Guidali, G
;
Souza Carneiro, MAIRA IZZADORA;Bolognini, N
2020

Abstract

Background: Associative plasticity, the neurophysiological bases of Hebbian learning, has been implied in the formation of the association between sensory and motor representations of actions in the Mirror Neuron System; however, such inductor role still needs empirical support. Objective/hypothesis: We have assessed whether Paired Associative Stimulation (PAS), known to activate Hebbian associative plasticity, can induce the formation of atypical (absent in normal conditions), visuo-motor associations, reshaping motor resonance. Methods: Healthy participants underwent a novel PAS protocol (mirror-PAS, m-PAS), during which they were exposed to repeated pairings of transcranial magnetic stimulation (TMS) applied over the right primary motor cortex (M1), time-locked with the view of index-finger movements of the right (ipsilateral) hand. In a first experiment, the inter-stimulus interval (ISI) between visual-action stimuli and TMS pulses was varied. Before and after each m-PAS session, motor resonance was assessed by recording Motor Evoked Potentials induced by single-pulse TMS applied to the right M1, during the observation of both contralateral (left) and ipsilateral (right) index-finger movements. In the second experiment, the specificity of the m-PAS was assessed by presenting a visual stimulus depicting a non-biological movement. Results: Before m-PAS, the facilitation of corticospinal excitability occurred only during the view of contralateral (with respect to the TMS side) index-finger movements. The m-PAS induced new ipsilateral motor resonance responses, indexed by atypical facilitation of corticospinal excitability by the view of ipsilateral hand movements. This effect occurred only if the associative stimulation followed the chronometry of motor control (ISI of 25 ms) and if the visual stimulus of the m-PAS depicts a biological movement (human hand action). Conclusions: The present findings provide the first empirical evidence that Hebbian learning induced by a PAS protocol shapes the visual-motor matching properties of the human Mirror Neuron System.
Articolo in rivista - Articolo scientifico
Hebbian learning; Mirror Neuron System; paired associative stimulation; motor cortex; visuo-motor association; transcranial magnetic stimulation
English
5-feb-2020
2020
13
3
627
636
reserved
Guidali, G., Souza Carneiro, M., Bolognini, N. (2020). Paired Associative Stimulation drives the emergence of motor resonance. BRAIN STIMULATION, 13(3), 627-636 [10.1016/j.brs.2020.01.017].
File in questo prodotto:
File Dimensione Formato  
Guidali, Carneiro, Bolognini - 2020 - Paired Associative Stimulation drives the emergence of motor resonance.pdf

Solo gestori archivio

Descrizione: Articolo principale post-print
Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Dimensione 8.93 MB
Formato Adobe PDF
8.93 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/260869
Citazioni
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
Social impact