In this work we investigate positivity properties of nonlocal Schrödinger type operators, driven by the fractional Laplacian, with multipolar, critical, and locally homogeneous potentials. On one hand, we develop a criterion that links the positivity of the spectrum of such operators with the existence of certain positive supersolutions, while, on the other hand, we study the localization of binding for this kind of potentials. Combining these two tools and performing an inductive procedure on the number of poles, we establish necessary and sufficient conditions for the existence of a configuration of poles that ensures the positivity of the corresponding Schrödinger operator.

Felli, V., Mukherjee, D., Ognibene, R. (2020). On fractional multi-singular Schrödinger operators: Positivity and localization of binding. JOURNAL OF FUNCTIONAL ANALYSIS, 278(4) [10.1016/j.jfa.2019.108389].

On fractional multi-singular Schrödinger operators: Positivity and localization of binding

Felli V.
;
Ognibene R.
2020

Abstract

In this work we investigate positivity properties of nonlocal Schrödinger type operators, driven by the fractional Laplacian, with multipolar, critical, and locally homogeneous potentials. On one hand, we develop a criterion that links the positivity of the spectrum of such operators with the existence of certain positive supersolutions, while, on the other hand, we study the localization of binding for this kind of potentials. Combining these two tools and performing an inductive procedure on the number of poles, we establish necessary and sufficient conditions for the existence of a configuration of poles that ensures the positivity of the corresponding Schrödinger operator.
Articolo in rivista - Articolo scientifico
Fractional Laplacian; Localization of binding; Multipolar potentials; Positivity Criterion;
English
14-nov-2019
2020
278
4
108389
partially_open
Felli, V., Mukherjee, D., Ognibene, R. (2020). On fractional multi-singular Schrödinger operators: Positivity and localization of binding. JOURNAL OF FUNCTIONAL ANALYSIS, 278(4) [10.1016/j.jfa.2019.108389].
File in questo prodotto:
File Dimensione Formato  
Felli-Mukherjee-Ognibene.pdf

accesso aperto

Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Licenza: Creative Commons
Dimensione 470.35 kB
Formato Adobe PDF
470.35 kB Adobe PDF Visualizza/Apri
Felli-2020-JFA-VoR.pdf

Solo gestori archivio

Descrizione: Publisher’s Version
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 700.32 kB
Formato Adobe PDF
700.32 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/259020
Citazioni
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
Social impact