The paper studies, with the help of HPLC-DAD-MS/MS technique, the hydrolytic and photoinduced degradation processes that take place in aqueous solutions of tribenuron methyl, both when preserved in the dark and when undergoing solar box irradiation under conditions that simulate sun light. The results indicate that the degradation products formed by hydrolysis alone and by photoirradiation are the same, but kinetics of the hydrolysis reaction is much slower. The degradation products are identified as 2-methoxy-4-methylamino-6-methyl-1,3,5-triazine (P1), methyl 2-aminosulfonylbenzoate (P2), and saccharin (P3) and quantified. Ecotoxicological biotests performed on 0.1 μg L-1 photoirradiated solutions of the herbicide give a border line toxicity situation comparable to that of the precursor and indicate that the herbicide is characterized by low persistence in the environment, as required. Its degradation, however, does not lead to mineralization but to the formation of products of comparable toxicity. To evaluate the matrix effects, the photodegradation of the herbicide is also studied in the presence of rice paddy waters: the process is slower than in ultrapure water but leads to the same products. Experiments performed for comparison by irradiating ultrapure water solutions with UV lamp (254 nm) show that the degradation process is not only faster with respect to sunlight, but gives a different pathway, without in anyway leading to mineralization

Bottaro, M., Frascarolo, P., Gosetti, F., Mazzucco, E., Gianotti, V., Polati, S., et al. (2008). Hydrolytic and photoinduced degradation of tribenuron methyl studied by HPLC-DAD-MS/MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 19(8), 1221-1229 [10.1016/j.jasms.2008.05.009].

Hydrolytic and photoinduced degradation of tribenuron methyl studied by HPLC-DAD-MS/MS

Gosetti, F;
2008

Abstract

The paper studies, with the help of HPLC-DAD-MS/MS technique, the hydrolytic and photoinduced degradation processes that take place in aqueous solutions of tribenuron methyl, both when preserved in the dark and when undergoing solar box irradiation under conditions that simulate sun light. The results indicate that the degradation products formed by hydrolysis alone and by photoirradiation are the same, but kinetics of the hydrolysis reaction is much slower. The degradation products are identified as 2-methoxy-4-methylamino-6-methyl-1,3,5-triazine (P1), methyl 2-aminosulfonylbenzoate (P2), and saccharin (P3) and quantified. Ecotoxicological biotests performed on 0.1 μg L-1 photoirradiated solutions of the herbicide give a border line toxicity situation comparable to that of the precursor and indicate that the herbicide is characterized by low persistence in the environment, as required. Its degradation, however, does not lead to mineralization but to the formation of products of comparable toxicity. To evaluate the matrix effects, the photodegradation of the herbicide is also studied in the presence of rice paddy waters: the process is slower than in ultrapure water but leads to the same products. Experiments performed for comparison by irradiating ultrapure water solutions with UV lamp (254 nm) show that the degradation process is not only faster with respect to sunlight, but gives a different pathway, without in anyway leading to mineralization
Articolo in rivista - Articolo scientifico
tribenuron methyl, HPLC-MS, sunlight degradation, photodegradation products
English
2008
19
8
1221
1229
reserved
Bottaro, M., Frascarolo, P., Gosetti, F., Mazzucco, E., Gianotti, V., Polati, S., et al. (2008). Hydrolytic and photoinduced degradation of tribenuron methyl studied by HPLC-DAD-MS/MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 19(8), 1221-1229 [10.1016/j.jasms.2008.05.009].
File in questo prodotto:
File Dimensione Formato  
17_triben.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 296.39 kB
Formato Adobe PDF
296.39 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/252954
Citazioni
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 33
Social impact