We give an explicit example of log Calabi-Yau pairs that are log canonical and have a linearly decreasing Euler characteristic. This is constructed in terms of a degree two covering of a sequence of blow ups of three dimensional projective bundles over the Segre-Hirzebruch surfaces F-n for every positive integer n big enough.
Bini, G., Favale, F. (2017). An unbounded family of log Calabi-Yau pairs. ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI, 28(3), 619-633 [10.4171/RLM/779].
An unbounded family of log Calabi-Yau pairs
Favale, F
2017
Abstract
We give an explicit example of log Calabi-Yau pairs that are log canonical and have a linearly decreasing Euler characteristic. This is constructed in terms of a degree two covering of a sequence of blow ups of three dimensional projective bundles over the Segre-Hirzebruch surfaces F-n for every positive integer n big enough.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
UnboundedFamily_v1.pdf
accesso aperto
Tipologia di allegato:
Submitted Version (Pre-print)
Dimensione
309.79 kB
Formato
Adobe PDF
|
309.79 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.