We give an explicit example of log Calabi-Yau pairs that are log canonical and have a linearly decreasing Euler characteristic. This is constructed in terms of a degree two covering of a sequence of blow ups of three dimensional projective bundles over the Segre-Hirzebruch surfaces F-n for every positive integer n big enough.

Bini, G., Favale, F. (2017). An unbounded family of log Calabi-Yau pairs. ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI, 28(3), 619-633 [10.4171/RLM/779].

An unbounded family of log Calabi-Yau pairs

Favale, F
2017

Abstract

We give an explicit example of log Calabi-Yau pairs that are log canonical and have a linearly decreasing Euler characteristic. This is constructed in terms of a degree two covering of a sequence of blow ups of three dimensional projective bundles over the Segre-Hirzebruch surfaces F-n for every positive integer n big enough.
Articolo in rivista - Articolo scientifico
Log Calabi-Yau pairs; geography of threefolds; projective bundles
English
2017
28
3
619
633
open
Bini, G., Favale, F. (2017). An unbounded family of log Calabi-Yau pairs. ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI, 28(3), 619-633 [10.4171/RLM/779].
File in questo prodotto:
File Dimensione Formato  
UnboundedFamily_v1.pdf

accesso aperto

Tipologia di allegato: Submitted Version (Pre-print)
Dimensione 309.79 kB
Formato Adobe PDF
309.79 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/230001
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact