We consider method-of-quantiles estimators of unknown one-dimensional parameters, namely the analogue of method-of-moments estimators obtained by matching empirical and theoretical quantiles at some probability level λ ε(0,1). The aim is to present large deviation results for these estimators as the sample size tends to infinity. We study in detail several examples; for specific models we discuss the choice of the optimal value of λ and we compare the convergence of the method-of-quantiles and method-of-moments estimators.

Bignozzi, V., Macci, C., & Petrella, L. (2020). Large deviations for method-of-quantiles estimators of one-dimensional parameters. COMMUNICATIONS IN STATISTICS. THEORY AND METHODS, 49(5), 1132-1157 [10.1080/03610926.2018.1554134].

Large deviations for method-of-quantiles estimators of one-dimensional parameters

Bignozzi, Valeria;
2020

Abstract

We consider method-of-quantiles estimators of unknown one-dimensional parameters, namely the analogue of method-of-moments estimators obtained by matching empirical and theoretical quantiles at some probability level λ ε(0,1). The aim is to present large deviation results for these estimators as the sample size tends to infinity. We study in detail several examples; for specific models we discuss the choice of the optimal value of λ and we compare the convergence of the method-of-quantiles and method-of-moments estimators.
Articolo in rivista - Articolo scientifico
Scientifica
60F10; 62F10; 62F12; location parameter; methods of moments; order statistics; scale parameter; skewness parameter;
English
Bignozzi, V., Macci, C., & Petrella, L. (2020). Large deviations for method-of-quantiles estimators of one-dimensional parameters. COMMUNICATIONS IN STATISTICS. THEORY AND METHODS, 49(5), 1132-1157 [10.1080/03610926.2018.1554134].
Bignozzi, V; Macci, C; Petrella, L
File in questo prodotto:
File Dimensione Formato  
ldmq3_vbcmlp.pdf

Solo gestori archivio

Tipologia di allegato: Submitted Version (Pre-print)
Dimensione 360.04 kB
Formato Adobe PDF
360.04 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10281/221198
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
Social impact