This study focused on the characterization of microbial communities during the desulfurization of ground tire rubber (GTR) by two bacterial strains i) Gordonia desulfuricans DSM 44462T, and ii) Rhodococcus sp. AF21875. Automated ribosomal inter-genic spacer analysis (ARISA), and high throughput sequencing of 16S rRNA gene amplicons were used to analyze samples collected from the bioreactors over time to detect the persistence of the inoculated bacteria within the autochthonous communities, and to compare communities in the bioreactors. Furthermore, the abundance of total bacteria (16S rRNA gene) and biodesulfurization potential (dszA) were estimated using qPCR, in the bioreactors and on GTR before the treatment. ARISA showed that G. desulfuricans DSM 44462T was able to persist, while there is no clear evidence of Rhodococcus sp. AF21875 persistence into the bioreactor due to the presence of matching ARISA fragments in the untreated GTR. In both bioreactors, a high abundance of genus Gordonia and Rhodococcus was observed, with an increase of dszA copy numbers over time. Vulcanizates containing biodesulfurized GTRs showed better mechanical and rheological properties than an untreated GTR vulcanizate and even comparable with a natural rubber reference.
Tatangelo, V., Mangili, I., Caracino, P., Bestetti, G., Collina, E., Anzano, M., et al. (2019). Microbial desulfurization of ground tire rubber (GTR): Characterization of microbial communities and rheological and mechanical properties of GTR and natural rubber composites (GTR/NR). POLYMER DEGRADATION AND STABILITY, 160, 102-109 [10.1016/j.polymdegradstab.2018.12.021].
Microbial desulfurization of ground tire rubber (GTR): Characterization of microbial communities and rheological and mechanical properties of GTR and natural rubber composites (GTR/NR)
Tatangelo, ValeriaPrimo
;Mangili, Ivan;Bestetti, Giuseppina;Collina, Elena;Anzano, Manuela;Branduardi, Paola;Posteri, Riccardo;Porro, Danilo;Lasagni, Marina
Membro del Collaboration Group
;Franzetti, AndreaUltimo
2019
Abstract
This study focused on the characterization of microbial communities during the desulfurization of ground tire rubber (GTR) by two bacterial strains i) Gordonia desulfuricans DSM 44462T, and ii) Rhodococcus sp. AF21875. Automated ribosomal inter-genic spacer analysis (ARISA), and high throughput sequencing of 16S rRNA gene amplicons were used to analyze samples collected from the bioreactors over time to detect the persistence of the inoculated bacteria within the autochthonous communities, and to compare communities in the bioreactors. Furthermore, the abundance of total bacteria (16S rRNA gene) and biodesulfurization potential (dszA) were estimated using qPCR, in the bioreactors and on GTR before the treatment. ARISA showed that G. desulfuricans DSM 44462T was able to persist, while there is no clear evidence of Rhodococcus sp. AF21875 persistence into the bioreactor due to the presence of matching ARISA fragments in the untreated GTR. In both bioreactors, a high abundance of genus Gordonia and Rhodococcus was observed, with an increase of dszA copy numbers over time. Vulcanizates containing biodesulfurized GTRs showed better mechanical and rheological properties than an untreated GTR vulcanizate and even comparable with a natural rubber reference.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0141391018304075-main.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Dimensione
1.01 MB
Formato
Adobe PDF
|
1.01 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.