We report on PbS colloidal nanocrystals that combine within one structure solubility in physiological solvents with near-infrared photoluminescence, and magnetic and optical properties tuneable by the controlled incorporation of magnetic impurities (Mn). We use high magnetic fields (B up to 30 T) to measure the magnetization of the nanocrystals in liquid and the strength of the sp-d exchange interaction between the exciton and the Mn-ions. With increasing Mn-content from 0.1% to 7%, the mass magnetic susceptibility increases at a rate of ∼10-7m3kg-1per Mn percentage; correspondingly, the exciton g-factor decreases from 0.47 to 0.10. The controlled modification of the paramagnetism, fluorescence and exciton g-factor of the nanocrystals is relevant to the implementation of these paramagnetic semiconductor nanocrystals in quantum technologies ranging from quantum information to magnetic resonance imaging. This journal is © the Partner Organisations 2014

Turyanska, L., Hill, R., Makarovsky, O., Moro, F., Knott, A., Larkin, O., et al. (2014). Tuneable paramagnetic susceptibility and exciton g-factor in Mn-doped PbS colloidal nanocrystals. NANOSCALE, 6(15), 8919-8925 [10.1039/c4nr02336f].

Tuneable paramagnetic susceptibility and exciton g-factor in Mn-doped PbS colloidal nanocrystals

Moro, F.;
2014

Abstract

We report on PbS colloidal nanocrystals that combine within one structure solubility in physiological solvents with near-infrared photoluminescence, and magnetic and optical properties tuneable by the controlled incorporation of magnetic impurities (Mn). We use high magnetic fields (B up to 30 T) to measure the magnetization of the nanocrystals in liquid and the strength of the sp-d exchange interaction between the exciton and the Mn-ions. With increasing Mn-content from 0.1% to 7%, the mass magnetic susceptibility increases at a rate of ∼10-7m3kg-1per Mn percentage; correspondingly, the exciton g-factor decreases from 0.47 to 0.10. The controlled modification of the paramagnetism, fluorescence and exciton g-factor of the nanocrystals is relevant to the implementation of these paramagnetic semiconductor nanocrystals in quantum technologies ranging from quantum information to magnetic resonance imaging. This journal is © the Partner Organisations 2014
Articolo in rivista - Articolo scientifico
Materials Science (all)
English
2014
6
15
8919
8925
none
Turyanska, L., Hill, R., Makarovsky, O., Moro, F., Knott, A., Larkin, O., et al. (2014). Tuneable paramagnetic susceptibility and exciton g-factor in Mn-doped PbS colloidal nanocrystals. NANOSCALE, 6(15), 8919-8925 [10.1039/c4nr02336f].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/210615
Citazioni
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 23
Social impact