We introduce obstructions to the existence of a calibrated G2-structure on a Lie algebra g of dimension seven, not necessarily nilpotent. In particular, we prove that if there is a Lie algebra epimorphism from g to a six-dimensional Lie algebra h with kernel contained in the center of g, then h has a symplectic form. As a consequence, we obtain a classification of the nilpotent Lie algebras that admit a calibrated G2-structure. © 2011 Elsevier B.V.

Conti, D., Fernández, M. (2011). Nilmanifolds with a calibrated G_2 structure. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 29(4), 493-506 [10.1016/j.difgeo.2011.04.030].

Nilmanifolds with a calibrated G_2 structure

CONTI, DIEGO;
2011

Abstract

We introduce obstructions to the existence of a calibrated G2-structure on a Lie algebra g of dimension seven, not necessarily nilpotent. In particular, we prove that if there is a Lie algebra epimorphism from g to a six-dimensional Lie algebra h with kernel contained in the center of g, then h has a symplectic form. As a consequence, we obtain a classification of the nilpotent Lie algebras that admit a calibrated G2-structure. © 2011 Elsevier B.V.
Articolo in rivista - Articolo scientifico
calibrated G2 forms, nilpotent Lie algebras, Lefschetz property
English
2011
29
4
493
506
open
Conti, D., Fernández, M. (2011). Nilmanifolds with a calibrated G_2 structure. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 29(4), 493-506 [10.1016/j.difgeo.2011.04.030].
File in questo prodotto:
File Dimensione Formato  
Nilmanifolds_with_a_calibrated_G_2_structure.pdf

Accesso Aperto

Tipologia di allegato: Other attachments
Dimensione 330.16 kB
Formato Adobe PDF
330.16 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/20765
Citazioni
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 34
Social impact