LiteBIRD is a candidate for JAXA’s strategic large mission to observe the cosmic microwave background (CMB) polarization over the full sky at large angular scales. It is planned to be launched in the 2020s with an H3 launch vehicle for three years of observations at a Sun-Earth Lagrangian point (L2). The concept design has been studied by researchers from Japan, U.S., Canada and Europe during the ISAS Phase-A1. Large scale measurements of the CMB B-mode polarization are known as the best probe to detect primordial gravitational waves. The goal of LiteBIRD is to measure the tensor-to-scalar ratio (r) with precision of r < 0:001. A 3-year full sky survey will be carried out with a low frequency (34 - 161 GHz) telescope (LFT) and a high frequency (89 - 448 GHz) telescope (HFT), which achieve a sensitivity of 2.5 μK-arcmin with an angular resolution 30 arcminutes around 100 GHz. The concept design of LiteBIRD system, payload module (PLM), cryo-structure, LFT and verification plan is described in this paper.

Realini, S., Patanchon, G., Kataoka, Y., Zonca, A., Zannoni, M., Yumoto, J., et al. (2018). Concept design of the LiteBIRD satellite for CMB B-mode polarization. In Space Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave; [10.1117/12.2313432].

Concept design of the LiteBIRD satellite for CMB B-mode polarization

Zannoni, Mario;Poletti, Davide;Lamagna, Luca;
2018

Abstract

LiteBIRD is a candidate for JAXA’s strategic large mission to observe the cosmic microwave background (CMB) polarization over the full sky at large angular scales. It is planned to be launched in the 2020s with an H3 launch vehicle for three years of observations at a Sun-Earth Lagrangian point (L2). The concept design has been studied by researchers from Japan, U.S., Canada and Europe during the ISAS Phase-A1. Large scale measurements of the CMB B-mode polarization are known as the best probe to detect primordial gravitational waves. The goal of LiteBIRD is to measure the tensor-to-scalar ratio (r) with precision of r < 0:001. A 3-year full sky survey will be carried out with a low frequency (34 - 161 GHz) telescope (LFT) and a high frequency (89 - 448 GHz) telescope (HFT), which achieve a sensitivity of 2.5 μK-arcmin with an angular resolution 30 arcminutes around 100 GHz. The concept design of LiteBIRD system, payload module (PLM), cryo-structure, LFT and verification plan is described in this paper.
slide + paper
Cosmology, Cosmic Microwave Background, CMB, Polarimetry, Inflation, Instrumentation
English
SPIE Astronomical Telescopes + Instrumentation
2018
Space Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave;
ago-2018
2018
106981Y
none
Realini, S., Patanchon, G., Kataoka, Y., Zonca, A., Zannoni, M., Yumoto, J., et al. (2018). Concept design of the LiteBIRD satellite for CMB B-mode polarization. In Space Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave; [10.1117/12.2313432].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/206547
Citazioni
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 30
Social impact