Background: KARS encodes lysyl-transfer ribonucleic acid (tRNA) synthetase, which catalyzes the aminoacylation of tRNA-Lys in the cytoplasm and mitochondria. Eleven families/sporadic patients and 16 different mutations in KARS have been reported to date. The associated clinical phenotype is heterogeneous ranging from early onset encephalopathy to isolated peripheral neuropathy or nonsyndromic hearing impairment. Recently additional presentations including leukoencephalopathy as predominant cerebral involvement or cardiomyopathy, isolated or associated with muscular and cerebral involvement, have been reported. A progressive Leukoencephalopathy with brainstem and spinal cord calcifications was previously described in a singleton patient and in two siblings, without the identification of the genetic cause. We reported here about a new severe phenotype associated with biallelic KARS mutations and sharing some common points with the other already reported phenotypes, but with a distinct clinical and neuroimaging picture. Review of KARS mutant patients published to date will be also discussed. Results: Herein, we report the clinical, biochemical and molecular findings of 2 unreported Italian patients affected by developmental delay, acquired microcephaly, spastic tetraparesis, epilepsy, sensory-neural hypoacusia, visual impairment, microcytic hypochromic anaemia and signs of hepatic dysfunction. MRI pattern in our patients was characterized by progressive diffuse leukoencephalopathy and calcifications extending in cerebral, brainstem and cerebellar white matter, with spinal cord involvement. Genetic analysis performed on these 2 patients and in one subject previously described with similar MRI pattern revealed the presence of biallelic mutations in KARS in all 3 subjects. Conclusions: With our report we define the molecular basis of the previously described Leukoencephalopathy with Brainstem and Spinal cord Calcification widening the spectrum of KARS related disorders, particularly in childhood onset disease suggestive for mitochondrial impairment. The review of previous cases does not suggest a strict and univocal genotype/phenotype correlation for this highly heterogeneous entity. Moreover, our cases confirm the usefulness of search for common brain and spine MR imaging pattern and of broad genetic screening, in syndromes clinically resembling mitochondrial disorders in spite of normal biochemical assay

Ardissone, A., Tonduti, D., Legati, A., Lamantea, E., Barone, R., Dorboz, I., et al. (2018). KARS-related diseases: Progressive leukoencephalopathy with brainstem and spinal cord calcifications as new phenotype and a review of literature. ORPHANET JOURNAL OF RARE DISEASES, 13(1) [10.1186/s13023-018-0788-4].

KARS-related diseases: Progressive leukoencephalopathy with brainstem and spinal cord calcifications as new phenotype and a review of literature

Ardissone, Anna;Ghezzi, Daniele
2018

Abstract

Background: KARS encodes lysyl-transfer ribonucleic acid (tRNA) synthetase, which catalyzes the aminoacylation of tRNA-Lys in the cytoplasm and mitochondria. Eleven families/sporadic patients and 16 different mutations in KARS have been reported to date. The associated clinical phenotype is heterogeneous ranging from early onset encephalopathy to isolated peripheral neuropathy or nonsyndromic hearing impairment. Recently additional presentations including leukoencephalopathy as predominant cerebral involvement or cardiomyopathy, isolated or associated with muscular and cerebral involvement, have been reported. A progressive Leukoencephalopathy with brainstem and spinal cord calcifications was previously described in a singleton patient and in two siblings, without the identification of the genetic cause. We reported here about a new severe phenotype associated with biallelic KARS mutations and sharing some common points with the other already reported phenotypes, but with a distinct clinical and neuroimaging picture. Review of KARS mutant patients published to date will be also discussed. Results: Herein, we report the clinical, biochemical and molecular findings of 2 unreported Italian patients affected by developmental delay, acquired microcephaly, spastic tetraparesis, epilepsy, sensory-neural hypoacusia, visual impairment, microcytic hypochromic anaemia and signs of hepatic dysfunction. MRI pattern in our patients was characterized by progressive diffuse leukoencephalopathy and calcifications extending in cerebral, brainstem and cerebellar white matter, with spinal cord involvement. Genetic analysis performed on these 2 patients and in one subject previously described with similar MRI pattern revealed the presence of biallelic mutations in KARS in all 3 subjects. Conclusions: With our report we define the molecular basis of the previously described Leukoencephalopathy with Brainstem and Spinal cord Calcification widening the spectrum of KARS related disorders, particularly in childhood onset disease suggestive for mitochondrial impairment. The review of previous cases does not suggest a strict and univocal genotype/phenotype correlation for this highly heterogeneous entity. Moreover, our cases confirm the usefulness of search for common brain and spine MR imaging pattern and of broad genetic screening, in syndromes clinically resembling mitochondrial disorders in spite of normal biochemical assay
Articolo in rivista - Articolo scientifico
Calcifications; KARS; Leukoencephalopathy; Mitochondrial disease; Genetics (clinical); Pharmacology (medical)
English
2018
13
1
45
open
Ardissone, A., Tonduti, D., Legati, A., Lamantea, E., Barone, R., Dorboz, I., et al. (2018). KARS-related diseases: Progressive leukoencephalopathy with brainstem and spinal cord calcifications as new phenotype and a review of literature. ORPHANET JOURNAL OF RARE DISEASES, 13(1) [10.1186/s13023-018-0788-4].
File in questo prodotto:
File Dimensione Formato  
KARS Ardissone et al 2018.pdf

accesso aperto

Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Dimensione 1.86 MB
Formato Adobe PDF
1.86 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/205489
Citazioni
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 29
Social impact