Hypoxia inducible factors (HIFs) are transcription factors belonging to the basic helix-loop-helix PER-ARNT-SIM (bHLH-PAS) protein family with a role in sensing oxygen levels in the cell. Under hypoxia, the HIF-α degradation pathway is blocked and dimerization with the aryl hydrocarbon receptor nuclear translocator (ARNT) makes HIF-α transcriptionally active. Due to the common hypoxic environment of tumors, inhibition of this mechanism by destabilization of HIF-α:ARNT dimerization has been proposed as a promising therapeutic strategy. Following the discovery of a druggable cavity within the PAS-B domain of HIF-2α, research efforts have been directed to identify artificial ligands that can impair heterodimerization. Although the crystallographic structures of the HIF-2α:ARNT complex have elucidated the dimer architecture and the 0X3-inhibitor placement within the HIF-2α PAS-B, unveiling the inhibition mechanism requires investigation of how ligand-induced perturbations could dynamically propagate through the structure and affect dimerization. To this end, we compared evolutionary features, intrinsic dynamics and energetic properties of the dimerization interfaces of HIF-2α:ARNT in both the apo and holo forms. Residue conservation analysis highlighted inter-domain connecting elements that have a role in dimerization. Analysis of domain contributions to the dimerization energy demonstrated the importance of bHLH and PAS-A of both partners and of HIF-2α PAS-B domain in dimer stabilization. Among quaternary structure oscillations revealed by Molecular Dynamics simulations, the hinge-bending motion of the ARNT PAS-B domain around the flexible PAS-A/PAS-B linker supports a general model for ARNT dimerization in different heterodimers. Comparison of the HIF-2α:ARNT dynamics in the apo and 0X3-bound forms indicated a model of inhibition where the HIF-2α-PAS-B interfaces are destabilised as a result of water-bridged ligand-protein interactions and these local effects allosterically propagate to perturb the correlated motions of the domains and inter-domain communication. These findings will guide the design of improved inhibitors to contrast cell survival in tumor masses

Motta, S., Minici, C., Corrada, D., Bonati, L., Pandini, A. (2018). Ligand-induced perturbation of the HIF-2α:ARNT dimer dynamics. PLOS COMPUTATIONAL BIOLOGY, 14(2) [10.1371/journal.pcbi.1006021].

Ligand-induced perturbation of the HIF-2α:ARNT dimer dynamics

Motta, S;Corrada, D;Bonati, L
;
2018

Abstract

Hypoxia inducible factors (HIFs) are transcription factors belonging to the basic helix-loop-helix PER-ARNT-SIM (bHLH-PAS) protein family with a role in sensing oxygen levels in the cell. Under hypoxia, the HIF-α degradation pathway is blocked and dimerization with the aryl hydrocarbon receptor nuclear translocator (ARNT) makes HIF-α transcriptionally active. Due to the common hypoxic environment of tumors, inhibition of this mechanism by destabilization of HIF-α:ARNT dimerization has been proposed as a promising therapeutic strategy. Following the discovery of a druggable cavity within the PAS-B domain of HIF-2α, research efforts have been directed to identify artificial ligands that can impair heterodimerization. Although the crystallographic structures of the HIF-2α:ARNT complex have elucidated the dimer architecture and the 0X3-inhibitor placement within the HIF-2α PAS-B, unveiling the inhibition mechanism requires investigation of how ligand-induced perturbations could dynamically propagate through the structure and affect dimerization. To this end, we compared evolutionary features, intrinsic dynamics and energetic properties of the dimerization interfaces of HIF-2α:ARNT in both the apo and holo forms. Residue conservation analysis highlighted inter-domain connecting elements that have a role in dimerization. Analysis of domain contributions to the dimerization energy demonstrated the importance of bHLH and PAS-A of both partners and of HIF-2α PAS-B domain in dimer stabilization. Among quaternary structure oscillations revealed by Molecular Dynamics simulations, the hinge-bending motion of the ARNT PAS-B domain around the flexible PAS-A/PAS-B linker supports a general model for ARNT dimerization in different heterodimers. Comparison of the HIF-2α:ARNT dynamics in the apo and 0X3-bound forms indicated a model of inhibition where the HIF-2α-PAS-B interfaces are destabilised as a result of water-bridged ligand-protein interactions and these local effects allosterically propagate to perturb the correlated motions of the domains and inter-domain communication. These findings will guide the design of improved inhibitors to contrast cell survival in tumor masses
Articolo in rivista - Articolo scientifico
Hypoxia-Inducible Factor; Bhlh-Pas Proteins; Molecular-Dynamics; Transcription Factor; Protein Dimerization; Ligand Inhibition; Correlated Motions; Long Distance Communication
English
feb-2018
2018
14
2
e1006021
open
Motta, S., Minici, C., Corrada, D., Bonati, L., Pandini, A. (2018). Ligand-induced perturbation of the HIF-2α:ARNT dimer dynamics. PLOS COMPUTATIONAL BIOLOGY, 14(2) [10.1371/journal.pcbi.1006021].
File in questo prodotto:
File Dimensione Formato  
10281-195628.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 39.43 MB
Formato Adobe PDF
39.43 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/195628
Citazioni
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
Social impact