Let X be a Hausdorff topological space and CL(X) the hyperspace of all closed nonempty subsets of X. We show that the Fell topology on CL(X) is normal if and only if the space X is Lindelof and locally compact. For the Fell topology normality, paracompactness and Lindelofness are equivalent

Holà, L., Levi, S., Pelant, J. (1999). Normality and paracompactness of the Fell topology. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 127(7), 2193-2197 [10.1090/S0002-9939-99-04737-1].

Normality and paracompactness of the Fell topology

Levi, S;
1999

Abstract

Let X be a Hausdorff topological space and CL(X) the hyperspace of all closed nonempty subsets of X. We show that the Fell topology on CL(X) is normal if and only if the space X is Lindelof and locally compact. For the Fell topology normality, paracompactness and Lindelofness are equivalent
Articolo in rivista - Articolo scientifico
Kuratowski convergence; Fell topology; locally compact Hausdorff space; Lindelöf space; normal space; $sigma$-compact space; Vietoris topology; well-monotone cover
English
1999
127
7
2193
2197
none
Holà, L., Levi, S., Pelant, J. (1999). Normality and paracompactness of the Fell topology. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 127(7), 2193-2197 [10.1090/S0002-9939-99-04737-1].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/18628
Citazioni
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 13
Social impact