We study measurability of the spectrum in topological algebras. We give some equivalences, prove that the spectrum in a Banach algebra is continuous on a dense Gδ and that in a polish algebra the set of invertible elements is an Fσδ and the inverse mapping a Borel function of the second class

Levi, S. (1986). Measurability properties of the spectrum. RENDICONTI DEL SEMINARIO MATEMATICO E FISICO DI MILANO, 56(1), 85-88 [10.1007/BF02925137].

Measurability properties of the spectrum

Levi, S
1986

Abstract

We study measurability of the spectrum in topological algebras. We give some equivalences, prove that the spectrum in a Banach algebra is continuous on a dense Gδ and that in a polish algebra the set of invertible elements is an Fσδ and the inverse mapping a Borel function of the second class
Articolo in rivista - Articolo scientifico
Spectrum mapping; Borel measurability of the spectrum in topological algebras; Polish algebra; inverse mapping
English
1986
56
1
85
88
none
Levi, S. (1986). Measurability properties of the spectrum. RENDICONTI DEL SEMINARIO MATEMATICO E FISICO DI MILANO, 56(1), 85-88 [10.1007/BF02925137].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/18624
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
Social impact