We study Borel measurability of the spectrum in topological algebras. We give some equivalences of the various properties, show that the spectrum in a Banach algebra is continuous on a dense Gs, and prove that in a Polish algebra the set of invertible elements is an FaSand the inverse mapping is a Borel function of the second class

Levi, S., Slodkowski, Z. (1986). Measurability properties of spectra. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 98(2), 225-231 [10.1090/S0002-9939-1986-0854024-3].

Measurability properties of spectra

LEVI, SANDRO;
1986

Abstract

We study Borel measurability of the spectrum in topological algebras. We give some equivalences of the various properties, show that the spectrum in a Banach algebra is continuous on a dense Gs, and prove that in a Polish algebra the set of invertible elements is an FaSand the inverse mapping is a Borel function of the second class
Articolo in rivista - Articolo scientifico
Spectrum mapping; Borel measurability of the spectrum in topological algebras; Polish algebra; inverse mapping
English
1986
98
2
225
231
none
Levi, S., Slodkowski, Z. (1986). Measurability properties of spectra. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 98(2), 225-231 [10.1090/S0002-9939-1986-0854024-3].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/18621
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
Social impact