The present study provides a comprehensive investigation at the micro and nanoscale of the interface between hybrid SiO2@POSS nanofiller, where silica nanoparticles (NPs) and POSS nanocages are intimately interconnected, and Styrene Butadiene Rubber (SBR). SEM and AFM inspection and, more in depth, solid state 1H NMR revealed a remarkable fraction of rigid rubber close to the SiO2@POSS surfaces, which increases with the curing temperature. Instead, a reduced amount of immobilized rubber was detected for SBR/SiO2+POSS nanocomposites, obtained by simply mixing SBR, SiO2 and POSS. The results allowed us to propose a model for the network formation in C-SBR/SiO2@POSS. This is based on the progressive activation by dicumylperoxide (DCP) of the methacryl functionalities of POSS nanounits which, being closely connected to SiO2 NPs in SiO2@POSS, promote crosslinking in proximity of the filler surfaces, and lead to the generation of a tight network strongly bonded to the rubber chains
Redaelli, M., D'Arienzo, M., Brus, J., Di Credico, B., Geppi, M., Giannini, L., et al. (2018). On the key role of SiO 2 @POSS hybrid filler in tailoring networking and interfaces in rubber nanocomposites. POLYMER TESTING, 65, 429-439 [10.1016/j.polymertesting.2017.12.022].
On the key role of SiO 2 @POSS hybrid filler in tailoring networking and interfaces in rubber nanocomposites
Redaelli, M;D'Arienzo, M
;Di Credico, B;Panattoni, F;Scotti, R;Morazzoni, F
2018
Abstract
The present study provides a comprehensive investigation at the micro and nanoscale of the interface between hybrid SiO2@POSS nanofiller, where silica nanoparticles (NPs) and POSS nanocages are intimately interconnected, and Styrene Butadiene Rubber (SBR). SEM and AFM inspection and, more in depth, solid state 1H NMR revealed a remarkable fraction of rigid rubber close to the SiO2@POSS surfaces, which increases with the curing temperature. Instead, a reduced amount of immobilized rubber was detected for SBR/SiO2+POSS nanocomposites, obtained by simply mixing SBR, SiO2 and POSS. The results allowed us to propose a model for the network formation in C-SBR/SiO2@POSS. This is based on the progressive activation by dicumylperoxide (DCP) of the methacryl functionalities of POSS nanounits which, being closely connected to SiO2 NPs in SiO2@POSS, promote crosslinking in proximity of the filler surfaces, and lead to the generation of a tight network strongly bonded to the rubber chainsFile | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0142941817316240-main.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Dimensione
1.99 MB
Formato
Adobe PDF
|
1.99 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.