BACKGROUND: Calmodulin (CaM) mutations have been identified recently in subjects with congenital long QT syndrome (LQTS) or catecholaminergic polymorphic ventricular tachycardia (CPVT), but the mechanisms responsible for these divergent arrhythmia-susceptibility syndromes in this context are unknown. We tested the hypothesis that LQTS-associated CaM mutants disrupt Ca2+ homeostasis in developing cardiomyocytes possibly by affecting either late Na current or Ca2+-dependent inactivation of L-type Ca2+ current. METHODS AND RESULTS: We coexpressed CaM mutants with the human cardiac Na channel (NaV1.5) in tsA201 cells, and we used mammalian fetal ventricular cardiomyocytes to investigate LQTS- and CPVT-associated CaM mutations (LQTS- and CPVT-CaM). LQTS-CaM mutants do not consistently affect L-type Na current in heterologous cells or native cardiomyocytes, suggesting that the Na channel does not contribute to LQTS pathogenesis in the context of CaM mutations. LQTS-CaM mutants (D96V, D130G, F142L) impaired Ca2+-dependent inactivation, whereas the CPVT-CaM mutant N54I had no effect on Ca2+-dependent inactivation. LQTS-CaM mutants led to loss of Ca2+-transient entrainment with the rank order from greatest to least effect: CaM-D130G~CaM-D96V>>CaM-F142L. This rank order follows measured Ca2+-CaM affinities for wild-type and mutant CaM. Acute isoproterenol restored entrainment for CaM-130G and CaM-D96V but caused irreversible cytosolic Ca2+ overload for cells expressing a CPVT-CaM mutant. CONCLUSIONS: CaM mutations associated with LQTS may not affect L-type Na+ current but may evoke defective Ca2+-dependent inactivation of L-type Ca2+ current

Yin, G., Hassan, F., Haroun, A., Murphy, L., Crotti, L., Schwartz, P., et al. (2014). Arrhythmogenic calmodulin mutations disrupt intracellular cardiomyocyte Ca2+ regulation by distinct mechanisms. JOURNAL OF THE AMERICAN HEART ASSOCIATION. CARDIOVASCULAR AND CEREBROVASCULAR DISEASE, 3(3), 1-14 [10.1161/JAHA.114.000996].

Arrhythmogenic calmodulin mutations disrupt intracellular cardiomyocyte Ca2+ regulation by distinct mechanisms

Crotti, L;
2014

Abstract

BACKGROUND: Calmodulin (CaM) mutations have been identified recently in subjects with congenital long QT syndrome (LQTS) or catecholaminergic polymorphic ventricular tachycardia (CPVT), but the mechanisms responsible for these divergent arrhythmia-susceptibility syndromes in this context are unknown. We tested the hypothesis that LQTS-associated CaM mutants disrupt Ca2+ homeostasis in developing cardiomyocytes possibly by affecting either late Na current or Ca2+-dependent inactivation of L-type Ca2+ current. METHODS AND RESULTS: We coexpressed CaM mutants with the human cardiac Na channel (NaV1.5) in tsA201 cells, and we used mammalian fetal ventricular cardiomyocytes to investigate LQTS- and CPVT-associated CaM mutations (LQTS- and CPVT-CaM). LQTS-CaM mutants do not consistently affect L-type Na current in heterologous cells or native cardiomyocytes, suggesting that the Na channel does not contribute to LQTS pathogenesis in the context of CaM mutations. LQTS-CaM mutants (D96V, D130G, F142L) impaired Ca2+-dependent inactivation, whereas the CPVT-CaM mutant N54I had no effect on Ca2+-dependent inactivation. LQTS-CaM mutants led to loss of Ca2+-transient entrainment with the rank order from greatest to least effect: CaM-D130G~CaM-D96V>>CaM-F142L. This rank order follows measured Ca2+-CaM affinities for wild-type and mutant CaM. Acute isoproterenol restored entrainment for CaM-130G and CaM-D96V but caused irreversible cytosolic Ca2+ overload for cells expressing a CPVT-CaM mutant. CONCLUSIONS: CaM mutations associated with LQTS may not affect L-type Na+ current but may evoke defective Ca2+-dependent inactivation of L-type Ca2+ current
Articolo in rivista - Articolo scientifico
L‐type Ca2+ channel; calcium; calmodulin; cardiomyocyte; long QT Syndrome
English
2014
3
3
1
14
e000996
open
Yin, G., Hassan, F., Haroun, A., Murphy, L., Crotti, L., Schwartz, P., et al. (2014). Arrhythmogenic calmodulin mutations disrupt intracellular cardiomyocyte Ca2+ regulation by distinct mechanisms. JOURNAL OF THE AMERICAN HEART ASSOCIATION. CARDIOVASCULAR AND CEREBROVASCULAR DISEASE, 3(3), 1-14 [10.1161/JAHA.114.000996].
File in questo prodotto:
File Dimensione Formato  
Yin 2014 J Am Heart Assoc.pdf

accesso aperto

Dimensione 2.13 MB
Formato Adobe PDF
2.13 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/182099
Citazioni
  • Scopus 78
  • ???jsp.display-item.citation.isi??? 70
Social impact