Latent Markov (LM) models represent an important tool of analysis of longitudinal data. We illustrate the main functions of the R package LMest that is tailored to fit the basic LM model, and some of its extended formulations, on longitudinal categorical data. The illustration is based on empirical analyses of datasets from a socio-economic perspective.

Bartolucci, F., Pandolfi, S., Pennoni, F. (2017). Package LMest for latent Markov analysis of longitudinal categorical data. In Book of Short Papers CLADAG2017 (pp.1-6).

Package LMest for latent Markov analysis of longitudinal categorical data

PENNONI, FULVIA
2017

Abstract

Latent Markov (LM) models represent an important tool of analysis of longitudinal data. We illustrate the main functions of the R package LMest that is tailored to fit the basic LM model, and some of its extended formulations, on longitudinal categorical data. The illustration is based on empirical analyses of datasets from a socio-economic perspective.
slide + paper
Expectation-Maximization algorithm, forward-backward recursions, mixed models, time-varying unobserved heterogeneity.
English
11th Scientific Meeting of the CLAssification and Data Analysis Group (CLADAG)
2017
Greselin, F; Mola, F; Zenga M
Book of Short Papers CLADAG2017
978-88-99459-71-0
2017
1
6
open
Bartolucci, F., Pandolfi, S., Pennoni, F. (2017). Package LMest for latent Markov analysis of longitudinal categorical data. In Book of Short Papers CLADAG2017 (pp.1-6).
File in questo prodotto:
File Dimensione Formato  
CLADAG_2017_paper_104.pdf

accesso aperto

Descrizione: Short paper of the 11th Scientific Meeting of the CLAssification and Data Analysis Group (CLADAG)
Dimensione 107.5 kB
Formato Adobe PDF
107.5 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/169907
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact