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ABSTRACT: Latent Markov (LM) models represent an important tool of analysis of
longitudinal data. We illustrate the main functions of the R package LMest that is
tailored to fit the basic LM model, and some of its extended formulations, on longitu-
dinal categorical data. The illustration is based on empirical analyses of datasets from
a socio-economic perspective.
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1 Introduction

We illustrate the R package LMest (V2.3, available from http://CRAN.
R-project.org/package=LMest), which provides a collection of func-
tions that can be used to estimate Latent Markov (LM) models for longitudinal
categorical data. The package is strongly related to the book of Bartolucci
et al. , 2013, where these models are illustrated from the methodological point
of view. The package is described in detail in the devoted paper of Bartolucci
et al. , 2017, to which we refer the reader for a more comprehensive overview.

The LMest package has several distinguishing features over the existing
R packages for similar models. In particular, it is designed to deal with lon-
gitudinal data, that is, with (even many) i.i.d. replicates of (usually short) se-
quences of data, and it can be used with univariate and multivariate categorical
outcomes. The package also allows us to deal with missing responses, includ-
ing drop-out and non-monotonic missingness, under the missing-at-random as-
sumption. Moreover, standard errors for the parameter estimates are obtained
by exact computation of the information matrix or through reliable numerical
approximations of this matrix. Finally, computationally efficient algorithms
are implemented for estimation and prediction of the latent states, by relying
on suitable Fortran routines.

http://CRAN.R-project.org/package=LMest
http://CRAN.R-project.org/package=LMest


In the next sections we show how, through the main functions of the LMest
package, we can estimate the basic LM model and LM models with individual
covariates; these covariates are included in the model through suitable param-
eterizations. In addition, we briefly show how to perform model selection and
local and global decoding. For reasons of space we just mention that additional
discrete random effects can be used to formulate mixed LM models, which are
estimable through the R function est lm mixed. In this case, the initial and
transition probabilities of the latent process are allowed to vary across different
latent subpopulations defined by an additional discrete latent variable.

2 The general latent Markov model formulation

In the following we provide a brief review of the main assumptions of LM
models for categorical longitudinal data. For a generic sample unit we con-
sider a vector Y(t) of r categorical response variables at T occasions, so that
t = 1, . . . ,T . Each response variable is denoted by Y (t)

j and has c j categories,
labeled from 0 to c j− 1, with j = 1, . . . ,r. Also let Ỹ be the vector obtained
by stacking Y(t) for t = 1, . . . ,T . When available, we denote by X(t) the vector
of individual covariates available at the t-th time occasion and by X̃ the vec-
tor of all the individual covariates. As usual, capital letters are used to denote
random variables or vectors and small letters for their realizations.

The general LM model formulation assumes the existence of a latent pro-
cess, denoted by U = (U (1), . . . ,U (T )), which affects the distribution of the
response variables. Such a process is assumed to follow a first-order Markov
chain with state space {1, . . . ,k}, where k is the number of latent states. Un-
der the local independence assumption, the response vectors Y(1), . . . ,Y(T ) are
assumed to be conditionally independent given the latent process U. More-
over, the elements Y (t)

j of Y(t) are conditionally independent given U (t). Pa-
rameters of the measurement model are the conditional response probabili-
ties φ

(t)
jy|ux = p(Y (t)

j = y|U (t) = u,X(t) = x), whereas parameters of the struc-
tural model are the initial and transition probabilities of the latent process:
πu|x = p(U (1) = u|X(1) = x), π

(t)
u|ūx = p(U (t) = u|U (t−1) = ū,X(t) = x).

Maximum likelihood estimation of the LM models is performed through
the Expectation-Maximization (EM) algorithm based on forward-backward re-
cursions (Baum et al. , 1970; Dempster et al. , 1977). This algorithm is based
on alternating two steps, consisting in obtaining the posterior distribution of the
latent states given the observed data (E-step) and updating the parameters by
maximizing the expected value of the complete data log-likelihood (M-step).



3 Basic latent Markov model

The basic LM model rules out individual covariates and assumes that the con-
ditional response probabilities are time homogenous. In symbols, we have
that φ

(t)
jy|ux = φ jy|u, πu|x = πu, and π

(t)
u|ūx = π

(t)
u|ū. The model is fitted by function

est lm basic, which requires the following main input arguments:
• S: array of response configurations of dimension n × TT (number of

time occasions) × r; missing responses are indicated with NA;
• yv: vector of frequencies of the response configurations;
• k: number of latent states;
• mod: model on the transition probabilities; mod = 0 when these prob-

abilities depend on time, mod = 1 when they are independent of time
(i.e., the latent Markov chain is time homogeneous), and mod from 2 to
TT when the Markov chain is partially homogeneous;
• start: equal to 0 for deterministic starting values of the model param-

eters (default value), to 1 for random starting values, and to 2 for initial
values provided as input arguments.

The output may be shown through the usual print and summary com-
mands, which display, among others, the maximum log-likelihood, the esti-
mated conditional response probabilities (Psi) and the estimated initial (piv)
and transition probabilities (Pi). The illustration of this function is based on
the survey data provided by the Russia Longitudinal Monitoring Survey∗, by
considering an ordinal response variable related to job satisfaction measured
on a scale ranging from 1 (“absolutely satisfied”) to 5 (“absolutely not satis-
fied”).

A suitable function search.model.LM allows us to select the value
of k on the basis of the observed data, by considering different initializations
of the EM algorithm which is used to maximize the log-likelihood function.
In this way, we can address jointly the problems of model selection and the
multimodality of the likelihood function. This function can also be applied to
the models illustrated in the following two sections.

4 Covariates in the measurement model

When the individual covariates are included in the measurement model, the la-
tent variables account for the unobserved heterogeneity, that is, the heterogene-

∗For more details on the study see http://www.cpc.unc.edu/projects/
rlms-hse, http://www.hse.ru/org/hse/rlms.
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ity between individuals that we cannot explain on the basis of the observable
covariates. In this case, the conditional distribution of the response variables
given the latent states may be parameterized by generalized logits.

In formulating the model we can rely on the following parameterization
based on global logits for a single ordinal response variable with c categories:

log
φ
(t)
y|ux + . . .+φ

(t)
c−1|ux

φ
(t)
0|ux + . . .+φ

(t)
y−1|ux

= µy+αu+x′βββ, u = 1, . . . ,k, y = 1, . . . ,c−1. (1)

In the above expression, the µy are cut-points, the αu are the support points cor-
responding to each latent state, and βββ is the vector of regression parameters for
the covariates. The model is estimated by function est lm cov manifest,
which requires the following main input arguments:

• S: matrix of the observed response configurations (of dimension n× TT)
with categories starting from 0;
• X: array of covariates of dimension n× TT× nc, where nc corresponds

the number of covariates;
• k: number of latent states;
• mod: type of model to be estimated, coded as mod = "LM" for the

model based on parameterization (1). In such a context, the latent process
is of first order with initial probabilities equal to those of the stationary
distribution of the chain. When mod = "FM", the function estimates a
model relying on the assumption that the distribution of the latent process
is a mixture of AR(1) processes with common variance σ2 and specific
correlation coefficients ρu (Bartolucci et al. , 2014);
• q: number of support points of the AR(1) structure mentioned above.

We illustrate the above functions through the analysis of the survey data
provided by Health and Retirement Study conducted by the University of Michi-
gan†. The main response of interest is an ordinal variable related to self evalu-
ation of the health status measured on a scale ranging from 1 (“excellent”) to
5 (“poor”).

5 Covariates in the latent model

When the covariates are included in the latent model, we suppose that the re-
sponse variables measure a certain individual characteristic of interest (e.g.,

†For more details on the study see http://hrsonline.isr.umich.edu/
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well-being), the evolution of which is represented by the latent Markov pro-
cess. In fact, this characteristic is not directly observable and we assume it may
evolve over time. In such a case, the main research interest is in measuring the
effect of covariates on the latent distribution. In particular, the individual co-
variates are assumed to affect the initial and transition probabilities of the LM
chain through the following multinomial logit parameterization:

log(πu|x/π1|x) = β0u +x′βββ1u, u = 2, . . . ,k,

log(π(t)
u|ūx/π

(t)
ū|ūx) = γ0ūu +x′γγγ1ūu, t = 2, . . . ,T, ū,u = 1, . . . ,k, ū 6= u,

where βββu = (β0u,βββ
′
1u)
′ and γγγūu = (γ0ūu,γγγ

′
1ūu)

′ are parameter vectors to be es-
timated, which are collected in the matrices βββ and ΓΓΓ. A more parsimonious
model for the transition probabilities is also allowed which is based on the
difference between two sets of parameters of the type

log(π(t)
u|ūx/π

(t)
ū|ūx) = γ0ūu +x′(γγγ1u− γγγ1ū). (2)

In the present case, the covariates are excluded from the measurement
model and we adopt the constraint φ

(t)
jy|ux = φ jy|u. The above parameterizations

are implemented in the R function est lm cov latent, which is based on
the following main input arguments:

• S: array of observed response configurations (of dimension n× TT× r)
with categories starting from 0; missing responses are coded as NA;
• X1: matrix of covariates affecting the initial probabilities of dimension n
× nc1, where nc1 is the number of corresponding covariates;
• X2: array of covariates affecting the transition probabilities of dimen-

sion n × (TT-1) × nc2, where nc2 is the number of corresponding
covariates;
• k: number of latent states;
• param: type of parameterization for the transition probabilities, coded

as param = "multilogit" (default) for the multinomial logit pa-
rameterization and as param = "difflogit" for the parameteriza-
tion based on the difference between two sets of parameters as in (2).

6 Local and global decoding

The prediction of the sequence of the latent states for a certain sample unit on
the basis of the data observed for this unit can be performed by using function



decoding. In particular, the EM algorithm directly provides the estimated
posterior probabilities of U (t), namely p(U (t) = u|X̃ = x̃, Ỹ = ỹ), for every co-
variate and response configuration (x̃, ỹ) observed at least once. These proba-
bilities can be directly maximized to obtain a prediction of the latent state of
every subject at each time occasion t; this is the so-called local decoding. In or-
der to track the latent state of a subject across time, the a posteriori most likely
sequence of states must be obtained, through the so-called global decoding,
which is based on an adaptation of the Viterbi algorithm (Viterbi, 1967).

Function decoding requires the following input arguments:
• est: object containing the output of one of the following functions:
est lm basic, est lm cov latent, est lm cov manifest, or
est lm mixed;
• Y: vector or matrix of responses;
• X1: matrix of covariates affecting the initial probabilities (for function
est lm cov latent) or affecting the distribution of the responses
(for est lm cov manifest);
• X2: array of covariates affecting the transition probabilities (for function
est lm cov latent).
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