In this paper, we investigate the behavior of the eigenvalues of a magnetic Aharonov-Bohm operator with half-integer circulation and Dirichlet boundary conditions in a bounded planar domain. We establish a sharp relation between the rate of convergence of the eigenvalues as the singular pole is approaching a boundary point and the number of nodal lines of the eigenfunction of the limiting problem, i.e. of the Dirichlet-Laplacian, ending at that point. The proof relies on the construction of a limit profile depending on the direction along which the pole is moving, and on an Almgren-type monotonicity argument for magnetic operators

Abatangelo, L., Felli, V., Noris, B., Nys, M. (2017). Sharp boundary behavior of eigenvalues for Aharonov-Bohm operators with varying poles. JOURNAL OF FUNCTIONAL ANALYSIS, 273(7), 2428-2487 [10.1016/j.jfa.2017.06.023].

Sharp boundary behavior of eigenvalues for Aharonov-Bohm operators with varying poles

Abatangelo, L;Felli, V
;
Noris, B;
2017

Abstract

In this paper, we investigate the behavior of the eigenvalues of a magnetic Aharonov-Bohm operator with half-integer circulation and Dirichlet boundary conditions in a bounded planar domain. We establish a sharp relation between the rate of convergence of the eigenvalues as the singular pole is approaching a boundary point and the number of nodal lines of the eigenfunction of the limiting problem, i.e. of the Dirichlet-Laplacian, ending at that point. The proof relies on the construction of a limit profile depending on the direction along which the pole is moving, and on an Almgren-type monotonicity argument for magnetic operators
Articolo in rivista - Articolo scientifico
Aharonov-Bohm operators; Almgren monotonicity formula; Spectral theory
English
2017
273
7
2428
2487
partially_open
Abatangelo, L., Felli, V., Noris, B., Nys, M. (2017). Sharp boundary behavior of eigenvalues for Aharonov-Bohm operators with varying poles. JOURNAL OF FUNCTIONAL ANALYSIS, 273(7), 2428-2487 [10.1016/j.jfa.2017.06.023].
File in questo prodotto:
File Dimensione Formato  
preprint_AFNN.pdf

accesso aperto

Tipologia di allegato: Submitted Version (Pre-print)
Dimensione 523.32 kB
Formato Adobe PDF
523.32 kB Adobe PDF Visualizza/Apri
JFA_published.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 1.1 MB
Formato Adobe PDF
1.1 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/166523
Citazioni
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
Social impact