Indoor position estimation constitutes a central task in home-based assisted living environments. Such environments often rely on a heterogeneous collection of low-cost sensors whose diversity and lack of precision has to be compensated by advanced techniques for localization and tracking. Although there are well established quantitative methods in robotics and neighboring fields for addressing these problems, they lack advanced knowledge representation and reasoning capacities. Such capabilities are not only useful in dealing with heterogeneous and lacking information but moreover they allow for a better inclusion of semantic information and more general homecare and patient-related knowledge. We address this problem and investigate how state-of-the-art localization and tracking methods can be combined with answer set programming, as a popular knowledge representation and reasoning formalism. We report upon a case-study and provide a first experimental evaluation of knowledge-based position estimation.
Mileo, A., Schaub, T., Merico, D., Bisiani, R. (2010). Knowledge-Based Multi-criteria Optimization to Support Indoor Positioning.. In 17th RCRA 2010 Workshop on Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion. Rheinisch-Westfaelische Technische Hochschule Aachen * Lehrstuhl Informatik V.
Knowledge-Based Multi-criteria Optimization to Support Indoor Positioning.
MILEO, ALESSANDRA;MERICO, DAVIDE;BISIANI, ROBERTO
2010
Abstract
Indoor position estimation constitutes a central task in home-based assisted living environments. Such environments often rely on a heterogeneous collection of low-cost sensors whose diversity and lack of precision has to be compensated by advanced techniques for localization and tracking. Although there are well established quantitative methods in robotics and neighboring fields for addressing these problems, they lack advanced knowledge representation and reasoning capacities. Such capabilities are not only useful in dealing with heterogeneous and lacking information but moreover they allow for a better inclusion of semantic information and more general homecare and patient-related knowledge. We address this problem and investigate how state-of-the-art localization and tracking methods can be combined with answer set programming, as a popular knowledge representation and reasoning formalism. We report upon a case-study and provide a first experimental evaluation of knowledge-based position estimation.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.