We find positive solutions to critical elliptic equations of Caffarelli-Kohn-Nirenberg type in R^N, which branch off from the manifold of minimizers in the class of radial functions of the corresponding Caffarelli-Kohn-Nirenberg-type inequality. Moreover, our analysis highlights the symmetry-breaking phenomenon in these inequalities, namely the existence of non-radial minimizers.

Felli, V., Schneider, M. (2003). Perturbation results of critical elliptic equations of Caffarelli-Kohn-Nirenberg type. JOURNAL OF DIFFERENTIAL EQUATIONS, 191(10), 121-142 [10.1016/S0022-0396(02)00085-2].

Perturbation results of critical elliptic equations of Caffarelli-Kohn-Nirenberg type

FELLI, VERONICA;
2003

Abstract

We find positive solutions to critical elliptic equations of Caffarelli-Kohn-Nirenberg type in R^N, which branch off from the manifold of minimizers in the class of radial functions of the corresponding Caffarelli-Kohn-Nirenberg-type inequality. Moreover, our analysis highlights the symmetry-breaking phenomenon in these inequalities, namely the existence of non-radial minimizers.
Articolo in rivista - Articolo scientifico
critical exponents, perturbative methods, symmetry breaking
English
2003
191
10
121
142
open
Felli, V., Schneider, M. (2003). Perturbation results of critical elliptic equations of Caffarelli-Kohn-Nirenberg type. JOURNAL OF DIFFERENTIAL EQUATIONS, 191(10), 121-142 [10.1016/S0022-0396(02)00085-2].
File in questo prodotto:
File Dimensione Formato  
Perturbation_results_of_critical.pdf

accesso aperto

Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Dimensione 272.4 kB
Formato Adobe PDF
272.4 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/1397
Citazioni
  • Scopus 105
  • ???jsp.display-item.citation.isi??? 94
Social impact