We study an odd-dimensional analogue of the Goldberg conjecture for compact Einstein almost Kähler manifolds. We give an explicit non-compact example of an Einstein almost cokähler manifold that is not cokähler. We prove that compact Einstein almost cokähler manifolds with nonnegative *-scalar curvature are cokähler (indeed, transversely Calabi–Yau); more generally, we give a lower and upper bound for the *-scalar curvature in the case that the structure is not cokähler. We prove similar bounds for almost Kähler Einstein manifolds that are not Kähler.
Conti, D., Fernández, M. (2016). Einstein almost cokähler manifolds. MATHEMATISCHE NACHRICHTEN, 289(11-12), 1396-1407 [10.1002/mana.201400412].
Einstein almost cokähler manifolds
CONTI, DIEGO
;
2016
Abstract
We study an odd-dimensional analogue of the Goldberg conjecture for compact Einstein almost Kähler manifolds. We give an explicit non-compact example of an Einstein almost cokähler manifold that is not cokähler. We prove that compact Einstein almost cokähler manifolds with nonnegative *-scalar curvature are cokähler (indeed, transversely Calabi–Yau); more generally, we give a lower and upper bound for the *-scalar curvature in the case that the structure is not cokähler. We prove similar bounds for almost Kähler Einstein manifolds that are not Kähler.File | Dimensione | Formato | |
---|---|---|---|
cosymplectic.pdf
accesso aperto
Descrizione: Articolo principale
Dimensione
271.62 kB
Formato
Adobe PDF
|
271.62 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.