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Abstract

We study an odd-dimensional analogue of the Goldberg conjec-
ture for compact Einstein almost Kähler manifolds. We give an ex-
plicit non-compact example of an Einstein almost cokähler manifold
that is not cokähler. We prove that compact Einstein almost cokähler
manifolds with non-negative ∗-scalar curvature are cokähler (indeed,
transversely Calabi-Yau); more generally, we give a lower and upper
bound for the ∗-scalar curvature in the case that the structure is not
cokähler. We prove similar bounds for almost Kähler Einstein mani-
folds that are not Kähler.

1 Introduction

An almost contact metric structure (α, ω, g) on a (2n + 1)-dimensional dif-
ferentiable manifold M is determined by a pair (α, ω) of differential forms,
where α is a 1-form and ω is a 2-form on M , and a Riemannian metric g
on M such that each point of M has an orthonormal coframe {e1, . . . , e2n+1}
with

α = e2n+1, ω = e1 ∧ e2 + e3 ∧ e4 + · · ·+ e2n−1 ∧ e2n.

If in addition, α and ω are both parallel with respect to the Levi-Civita
connection of the metric g, then (α, ω, g) is called a cokähler structure, and
(M,α, ω, g) is called a cokähler manifold [25].

By analogy with the terminology used in almost Hermitian geometry
(see [16, 18, 22]), we say that an almost contact metric structure (α, ω, g)
on a manifold M is almost cokähler if α and ω are both closed. We call
(M,α, ω, g) an almost cokähler manifold. Then, the Riemannian product
M × R (or M × S1) is an almost Kähler manifold (in particular, Kähler if
(α, ω, g) is a cokähler structure) and (M,α, ω) is a cosymplectic manifold in
the sense of Libermann [26] since α ∧ ωn is a volume form of M .
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In the last years, the geometry and topology of cokähler and almost
cokähler manifolds have been studied by several authors (see for example
[3, 4, 5, 8, 14, 13, 19, 25] and the references therein).

Concerning the geometry of compact almost Kähler manifolds, the Gold-
berg conjecture states that the almost complex structure of a compact Ein-
stein almost Kähler manifold is integrable [16]. In [28], Sekigawa gives a
proof of this conjecture under the assumption that the scalar curvature of
the almost Kähler manifold is non-negative. This assumption can be replaced
by the condition that the ∗-scalar curvature be positive (Corollary 4.4); more
generally, the same type of argument leads to an estimate for the ∗-scalar
curvature (Theorem 4.3). On the negative side, a complete, almost Kähler
Einstein manifold which is not Kähler was constructed in [2] (see also [21]);
this example is not compact, and its scalar curvature is negative.

An odd-dimensional analogue of the Goldberg conjecture was considered
in [10], where it is proved that a compact K-contact Einstein manifold is
Sasakian (see also [1]). Following [12], in this paper we consider another
odd-dimensional version of this problem, namely:

Are all compact Einstein almost cokähler manifolds cokähler?

We note that a negative answer would disprove the Goldberg conjecture
proper, as the product of an Einstein, strictly almost cokähler manifold with
itself is Einstein and strictly almost Kähler (Proposition 4.5).

A key tool to attack this problem is the Weitzenböck formula applied to
the harmonic forms α and ω (Lemma 3.1). Indeed, this formula implies that
Einstein cokähler manifolds, unlike their even-dimensional counterpart, are
Ricci-flat (Proposition 3.2). In addition, it implies that any Einstein almost
cokähler manifold has non-positive scalar curvature.

A second ingredient is an equality taken from [2] relating the curvature
and Nijenhuis tensor (with their derivatives) on an almost Kähler manifold;
a version of this formula was used by Sekigawa in his original proof. An esti-
mate based on this equality leads to our main result (Theorem 4.7), proving
a bound for the difference between the scalar curvature and the ∗-scalar cur-
vature. This difference is zero in the cokähler case; geometrically, this result
shows that the underlying almost cosymplectic structure is in some sense
close to being integrable. In particular, if one assumes the ∗-scalar curvature
to be non-negative, then a compact, Einstein almost cokähler manifold is
necessarily cokähler (Corollary 4.8). Also, as a consequence of Theorem 4.7,
we recover the result of [12], namely, any compact, Einstein, almost cokähler
manifold whose Reeb vector field is Killing is cokähler (Corollary 4.9).

In section 5, we show that the odd-dimensional analogue of the Goldberg
conjecture does not hold in the non-compact setting. Using results of Lauret
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on Einstein solvmanifolds [23, 24], we construct examples of non-compact,
complete Einstein almost cokähler manifolds which are not cokähler.

2 Almost contact metric structures

We recall some definitions and results on almost contact metric manifolds
(see [7, 8, 11] for more details).

Let M be a (2n + 1)-dimensional manifold. An almost contact structure
on M consists of a pair (α, ω) of differential forms on M , where α is a 1-form
and ω is a 2-form, such that α ∧ ωn is a volume form. We call (M,α, ω) an
almost contact manifold.

Therefore, if (α, ω) is an almost contact structure on M , the kernel of α
defines a codimension one distribution H = kerα, and the tangent bundle
TM of M decomposes as

TM = H⊕ 〈ξ〉 ,

where ξ is the nowhere vanishing vector field on M (the Reeb vector field of
(α, ω)) determined by the conditions

α(ξ) = 1, ιξ(ω) = 0,

where ιξ denotes the contraction by ξ.
Since ω defines a non degenerate 2-form on H, there exists an almost

Hermitian structure (J, gH) on H with Kähler form the 2-form ω, that is,
there are an endomorphism J : H −→ H and a metric gH on H such that

J2 = −IdH, gH(X, Y ) = gH(JX, JY ), ω(X, Y ) = gH(JX, Y ),

for X, Y ∈ H.
Thus, given an almost contact structure (α, ω) on M and fixed an al-

most Hermitian structure (J, gH) on H with Kähler form ω, we have the
Riemannian metric g on M given by

g = gH + α2.

In this case, we say that g is a compatible metric with (α, ω), and (α, ω, g) is
said to be an almost contact metric structure on M . We call (M,α, ω, g) an
almost contact metric manifold. (Notice that such a metric g is not unique;
indeed, it depends of the choice of gH.) Hence, for any point p of M there
exist a neighborhood Up and an orthonormal coframe {e1, . . . , e2n+1} with

α = e2n+1, ω = e12 + e34 + · · ·+ e2n−1,2n.
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Here and in the sequel, eij is short for ei ∧ ej.
Under these conditions, the almost complex structure J on H defines the

endomorphism φ : TM −→ TM by

φ(X) = J(X), φ(ξ) = 0,

for any X ∈ H. One can check that the quadruplet (α, ξ, φ, g) satisfies the
conditions

α(ξ) = 1, φ2 = −Id + ξ ⊗ α, g(φX, φY ) = g(X, Y )− α(X)α(Y ) ,

for any vector fields X, Y on M . Conversely, if M is a differentiable manifold
of dimension 2n+1 with a quadruplet (α, ξ, φ, g) satisfying (2), then (α, ω, g)
is an almost contact metric structure on M , where ω is the 2-form on M given
by

ω(X, Y ) = g(φX, Y ),

for any vector fields X, Y on M .
We say that an almost contact metric structure (α, ω, g) on M is almost

cokähler if α and ω are both closed, and cokähler if they are both parallel
under the Levi-Civita connection. On an almost cokähler manifold the forms
α and ω are harmonic (see [17, Lemma 3]), and on a cokähler manifold the
Reeb vector field ξ is Killing and parallel (see, for example [7, 8]).

3 Einstein almost cokähler manifolds

In this section we consider almost cokähler manifolds of dimension 2n + 1
whose underlying metric g is Einstein in the Riemannian sense, that is, the
Ricci curvature tensor satisfies

Ric = τg,

where τ is a constant; the scalar curvature is then given by

s = (2n+ 1)τ.

We do not assume compactness in this section.
¿From now on, we denote by ∇ the Levi-Civita connection of g, which

induces a second operator

∇∗ : Γ(T ∗M ⊗ ΛpM)→ Γ(ΛpM), ∇∗ = − tr∇.
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If e1, . . . , e2n+1 denotes a local orthonormal frame and e1, . . . , e2n+1 is its dual
coframe, we can express ∇∗ by

∇∗(ei ⊗ β) = −
2n+1∑
j=1

〈ej,∇ejei〉β −∇eiβ.

Here and in the sequel, 〈X, Y 〉 is an alternative notation for g(X, Y ).
The operator ∇∗ is the formal adjoint of ∇ in the sense that, when α and

β are compactly supported,∫
M

〈∇α, β〉 =

∫
M

〈α,∇∗β〉.

Moreover, when β = ∇α the equation holds pointwise, i.e.

|∇α|2 = 〈α,∇∗∇α〉.

We denote by R the curvature tensor given by

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z;

we note that [2] uses the opposite sign. Recall the classical formula due to
Weitzenböck (see e.g. [6]): given a p-form η,

∆η = −
∑
h,k

eh ∧ (ekyR(eh, ek)η) +∇∗∇η. (1)

On an almost contact metric manifold, the ∗-Ricci tensor is defined as

Ric∗(X, Y ) = ω
( 2n∑
i=1

R(X, ei)(Jei), Y
)
.

We shall also consider the ∗-Ricci form

ρ∗(X, Y ) =
∑
i

〈R(X, ei)(Jei), Y 〉

and set

τ ∗ =
1

n
〈ω, ρ∗〉.

Lemma 3.1. On any Einstein almost cokähler manifold (M,α, ω, g) with
Ric = τg,

∇∗∇α = −τα, ∇∗∇ω = 2(ρ∗ − τω).
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Proof. If η is a 1-form, the Weitzenböck formula (1) specializes to

∆η = ∇∗∇η + Ric(η).

where Ric denotes the Ricci operator. By [17, Lemma 3], α is harmonic.
Then, using the Einstein condition Ric = τg, we obtain the first formula.

If η is a 2-form, (1) can be written as

∆η = ∇∗∇η + Ric(η) + 2R̃(η);

where the Ricci operator acts as derivations, and R̃(η) denotes the image of η
under the curvature operator R̃ ∈ Γ(End(Λ2T ∗M)). Applying this to η = ω,

2R̃(ω) =
∑
i

R(ei, Jei);

by the Bianchi identity, we find

2R(ω)(X, Y ) =
∑
i

R(ei, Jei, X, Y ) =
∑
i

−R(Jei, X, ei, Y )−R(X, ei, Jei, Y )

= −2
∑
i

R(X, ei, Jei, Y ) = −2ρ∗(X, Y ).

Hence the Weitzenböck formula gives

∇∗∇ω = −Ric(ω)− 2R(ω) = −2τω + 2ρ∗,

where we have used the facts that ω is harmonic (see [17, Lemma 3]) and the
identity acts as twice the identity on Λ2T ∗M .

Our first observation is that Einstein cokähler manifolds, unlike their
even-dimensional counterpart, are necessarily Ricci-flat. The proof exploits
the existence of a non-zero harmonic one-form α and mimics Bochner’s proof
that a compact Einstein manifold with positive curvature cannot have b1 > 0
(see [9]).

Proposition 3.2. Any Einstein cokähler manifold (M,α, ω, g) is Ricci-flat.

Proof. By hypothesis, ∇α = 0, so Lemma 3.1 implies that the scalar curva-
ture is zero.

This result does not hold if M is only assumed to be an almost cokähler
manifold; indeed, in Section 5 we will construct an almost cokähler Einstein
manifold with negative scalar curvature. However, we can prove directly
from Lemma 3.1 that the scalar curvature is not allowed to be positive:
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Proposition 3.3. Let (M,α, ω, g) be a an Einstein almost cokähler manifold.
Then

0 ≤ −τ ≤ 2n(τ ∗ − τ). (2)

Proof. By Lemma 3.1,

|∇α|2 = −τ, |∇ω|2 = 2n(τ ∗ − τ).

Observe that ∗α = 1
n!
ωn; therefore, for any tangent vector X,

∗ ∇Xα = ∇X ∗ α = ∇X
1

n!
ωn = ∇Xω ∧

1

(n− 1)!
ωn−1

=
n∑
i=1

(∇Xω)(e2i−1, e2i)e
1,...,2n +∇Xω(e2i, ξ)e

1,...,2̃i−1,...,2n+1

+∇Xω(e2i−1, ξ)e
1,...,2̃i,...,2n+1;

it follows that |∗∇Xα|2 ≤ |∇Xω|2, and consequently 0 ≤ |∇α|2 ≤ |∇ω|2; the
statement follows.

4 The compact case

In this section we consider potential counterexamples of the Goldberg conjec-
ture, namely compact Einstein manifolds with either an almost Kähler struc-
ture that is not Kähler or an almost cokähler structure that is not cokähler,
and prove an integral bound on the difference between scalar curvature and
∗-scalar curvature. The main ingredient is a formula of [2] that relates the
curvature on an almost Kähler manifold to the covariant derivative of the
fundamental form.

In order to introduce this formula, let (N, h, J,Ω) be an almost Kähler
manifold with Riemannian metric h, almost complex structure J and Kähler
form Ω, and let ∇ be the Levi-Civita connection. Borrowing notation from
[2], we decompose the Ricci tensor in two components

Ric′ ∈ [S1,1], Ric′′ ∈ [[S2,0]];

here, [S1,1] represents the real subspace of conjugation-invariant elements of
S1,1, and [[S2,0]] represents [S2,0+S0,2]. In other words, Ric′ is the component
that commutes with J , and Ric′′ is the component that anticommutes with
J . We define the Ricci and *Ricci forms as

ρh(X, Y ) = Ric′(JX, Y ), ρ∗h(X, Y ) =
2n∑
i=1

R(X, ei, Jei, Y ),
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where {e1, . . . , e2n} is a local orthonormal frame. Note that in the notation
of [2], we can write ρ∗h = −R(ω), where the different sign follows from the
conventions.

The scalar and ∗-scalar curvatures are defined by

s = 2〈ρh,Ω〉, s∗ = 2〈ρ∗h,Ω〉.

The Weitzenböck formula (see e.g. [2]) gives ∇∗∇Ω = 2(ρ∗h− ρh); in partic-
ular,

|∇Ω|2 = s∗ − s. (3)

The curvature tensor R takes values in

S2([[Λ2,0]] + [Λ1,1]) = S2([[Λ2,0]]) + [[Λ2,0]]⊗ [Λ1,1] + S2([Λ1,1]);

we denote by R̃ the first component in this decomposition. As an endomor-
phism of [[Λ2,0]], R̃ decomposes in two components that commute (respec-
tively, anticommute) with J , namely

R̃ = R̃′ + R̃′′.

We also introduce the two-form

φ(X, Y ) = 〈∇JXΩ,∇Y Ω〉;

this is well defined and J-invariant by the following observation, which is
implicit in [2]:

Lemma 4.1. On an almost-Kähler manifold (N, h, J,Ω),

〈∇XΩ,∇Y Ω〉 = 〈∇JXΩ,∇JY Ω〉. (4)

Proof. The image of the infinitesimal action of so(2n) on Ω is [[Λ2,0]]; there-
fore, the covariant derivative ∇Ω lies in

Λ1 ⊗ [[Λ2,0]] = [[Λ1,0 ⊗ Λ2,0]] + [[Λ1,0 ⊗ Λ0,2]]

(see also [27, Lemma 3.3]). Since the Levi-Civita connection is torsion-free,
dΩ is the image of ∇Ω under the skew-symmetrization map

Λ1 ⊗ [[Λ2,0]]→ Λ3, α⊗ β 7→ α ∧ β;

thus, ∇Ω is in the kernel of this map, which has the form

[[V ]] ⊂ [[Λ1,0 ⊗ Λ2,0]]. (5)
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Fixing a basis {ωa} on Λ2,0, orthonormal for the standard hermitian product,
the inclusion (5) implies that ∇Ω can be written as

∇Ω =
∑
a

λa ⊗ ωa + λa ⊗ ωa ∈ Λ1,0 ⊗ Λ2,0 + Λ0,1 ⊗ Λ0,2;

it follows that
〈∇Ω,∇Ω〉 =

∑
a

λa ⊗ λa + λa ⊗ λa

lies in [S1,1].

Proposition 4.2 (Apostolov-Drăghici-Moroianu [2]). On an almost Kähler
manifold (N, h, J,Ω), there is a one-form γ such that

∆(s−s∗)+d∗γ+2 |Ric′′|2−8
∣∣∣R̃′′∣∣∣2−|∇∗∇Ω|2−|φ|2+4〈ρh, φ〉−4〈ρh,∇∗∇Ω〉 = 0.

Notice that this formula holds locally, and compactness is not assumed.
On the other hand, integrating this identity on a compact manifold yields a
formula where the first two terms do not appear, since the codifferential of a
one-form is always the Hodge dual of an exact form.

If N is also Einstein and compact, we can derive from this formula an
integral bound on the difference s∗− s; by (3), this means that N is close to
being Kähler. More precisely:

Theorem 4.3. Every compact Einstein almost Kähler manifold (N, h, J,Ω)
which is not Kähler satisfies

s <
1

V

∫
s∗ ≤ 1

5
s < 0,

where V denotes the volume.

Proof. Let the dimension of N be 2n. The Einstein condition implies Ric =
1
2n
sId, so Ric′′ is identically zero and ρh = 1

2n
sΩ; integrating the formula of

Proposition 4.2, we obtain∫
−8
∣∣∣R̃′′∣∣∣2 − |∇∗∇Ω|2 − |φ|2 +

2

n
s〈Ω, φ〉 − 2

n
s〈Ω,∇∗∇Ω〉 = 0.

The Weitzenböck formula gives∫
|∇∗∇Ω|2 =

∫ ∣∣∣∣2(ρ∗h − 1

2n
sΩ)

∣∣∣∣2 ≥ ∫ 〈2ρ∗h − 1

n
sΩ,Ω〉2 1

|Ω|2

=

∫
1

n
(s∗ − s)2,
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where we have applied the Cauchy-Schwartz inequality at each point and
used |Ω|2 = n. With respect to an orthonormal basis {e1, . . . , e2n},

〈Ω, φ〉 =
1

2

∑
φ(ei, Jei) =

1

2

∑
〈∇JeiΩ,∇JeiΩ〉 =

1

2
|∇Ω|2 . (6)

Therefore ∫
2

n
s〈Ω, φ〉 − 2

n
s〈Ω,∇∗∇Ω〉 = − 1

n
s

∫
〈Ω,∇∗∇Ω〉.

Hence ∫
|φ|2 ≤

∫
− 1

n
(s∗ − s)2 − 1

n
s(s∗ − s) = − 1

n

∫
s∗(s∗ − s);

by (3), this is only possible if s < 0, consistently with Sekigawa’s result [28].
Again by (3), we can write

s∗ − s = −fs, f > 0.

On the other hand,

|φ|2 =
1

2

∑
1≤i,j≤2n

φ(Jei, ej)
2 =

1

2

∑
1≤i,j≤2n

〈∇eiΩ,∇ejΩ〉2

≥
∑
i

1

2
|∇eiΩ|

4 ≥ 1

4n

(∑
i

|∇eiΩ|
2)2,

where we have used the generalized mean inequality. Summing up,

1

4n
s2
∫
f 2 =

1

4n

∫
|∇Ω|4 ≤

∫
|φ|2 ≤

∫
1

n
(1− f)fs2.

By the Cauchy-Schwartz inequality, this gives

5

4V
(

∫
f)2 ≤ 5

4

∫
f 2 ≤

∫
f.

In particular,
∫
f ≤ 4

5
V .

As a consequence, we obtain a variation of Sekigawa’s theorem that ap-
plies when s∗, as opposed to s, is non-negative.

Corollary 4.4. Let (N, h, J,Ω) be a compact, Einstein, almost Kähler man-
ifold. If

∫
s∗ ≥ 0, then (M, g, α, ω) is Kähler.
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One way of approaching the odd-dimensional case is through the following
observation:

Proposition 4.5. Let (M, g, ω, α) be an almost cokähler Einstein manifold
of dimension 2n+1. A natural almost Kähler structure is induced on M×M ;
it is Einstein and satisfies

s = (4n+ 2)τ, s∗ = 4nτ ∗.

Proof. Let (M̃, g̃, ω̃, α̃) be another copy of (M, g, ω, α), and consider the Rie-
mannian product N = M × M̃ with the almost-Kähler structure determined
by

Ω = ω + ω̃ + α ∧ α̃.

The Ricci tensor on N is given by τg+ τ g̃, giving s = (4n+ 2)τ ; the formula
for s∗ can be derived similarly, or from

s∗ − s = |∇Ω|2 = |∇ω|2 + |∇ω̃|2 + |∇α|2 + |∇α̃|2 = 4n(τ ∗ − τ)− 2τ.

Corollary 4.6. Let (M, g, α, ω) be a compact, Einstein, almost cokähler
manifold of volume V and dimension 2n+ 1. Then

τ ≤ 1

V

∫
τ ∗ ≤ 1

5
τ ≤ 0.

Proof. By Proposition 3.3, τ ∗ ≥ τ and τ ≤ 0. Let N = M ×M with the
induced almost Kähler structure, as in Proposition 4.5. If N is Kähler, then

(4n+ 2)τ = s = s∗ = 4nτ ∗.

This is only possible if τ = τ ∗ = 0, which makes the statement hold trivially.
If N is not Kähler, Theorem 4.3 implies that

1

V

∫
(4n)τ ∗ ≤ 1

5
(4n+ 2)τ.

The estimate of Corollary 4.6 only makes use of the fact that the induced
almost Kähler structure on M ×M is Einstein, neglecting other conditions
that follow from M being almost cokähler. We can obtain a sharper estimate
by making use of these conditions; in order to simplify the argument, we shall
work with M × S1 rather than M ×M .

Theorem 4.7. Let (M, g, α, ω) be a compact, Einstein, almost cokähler man-
ifold of volume V and dimension 2n+ 1. Then either
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1) τ = 0 = τ ∗ and (M, g, α, ω) is cokähler; or

2)
1

2n
≤ 1

V

∫
τ − τ ∗

τ
≤ 4n− 1 +

√
16n2 − 8n− 14

10n

and (M, g, α, ω) is not cokähler.

Proof. Let t be a coordinate on S1 = {eit}, and write θ = dt. On the product
M × S1, fix the product metric h = g + θ ⊗ θ, and set

Ω = ω + α ∧ θ;

we thus obtain a compact almost-Kähler manifold (M × S1, h,Ω, J).
By construction, the Ricci tensor of h is

Rich = Ricg = τg,

where τ is a constant; the scalar curvature of h is then (2n + 1)τ , and Rich

splits into the two components

Ric′ = τ(h− 1

2
α⊗ α− 1

2
θ ⊗ θ), Ric′′ =

1

2
τ(α⊗ α− θ ⊗ θ).

By definition, the Ricci form is

ρh = τ(Ω− 1

2
α ∧ θ).

Since the vanishing of ∇ ∂
∂t

Ω implies that 〈φ, α ∧ θ〉 is zero, using (6) we

conclude that

〈ρh, φ〉 =
1

2
τ |∇Ω|2 .

By construction,
∇Ω = ∇ω +∇α ∧ θ,

giving
|∇Ω|2 = |∇ω|2 + |∇α|2 .

Integrating over M × S1, we find∫
〈∇∗∇ω, ω〉 =

∫
2n(τ ∗ − τ),

∫
〈∇∗∇α, α〉 =

∫
−τ, (7)

where we have used Lemma 3.1.
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Similarly,

〈∇ρh,∇Ω〉 = τ |∇Ω|2 − 1

2
τ〈(∇α) ∧ θ,∇Ω〉 = τ |∇Ω|2 − 1

2
τ |∇α|2 .

Finally, observe that

∇∗∇Ω = ∇∗(∇ω +∇α ∧ θ) = ∇∗∇ω +∇∗∇α ∧ θ = 2(ρ∗ − τω)− τα ∧ θ.

where ρ∗ is the odd-dimensional *Ricci. We can write

ρ∗ = τ ∗ω + ρ∗0, 〈ρ∗0, ω〉 = 0,

giving
|∇∗∇Ω|2 = 4n(τ ∗ − τ)2 + τ 2 + 4 |ρ∗0|

2 .

We can decompose the space [[Λ2,0]] as

[[Λ2,0]]H ⊕ [[Λ2,0]]α = Span
{
eij − Jei ∧ Jej

}
⊕ Span

{
α ∧ ei − θ ∧ Jei

}
;

writing the curvature as

R =
∑

aijkle
ij ⊗ ekl + bijke

ij � α ∧ ek + cijα ∧ ei ⊗ α ∧ ej,

its projection on S2([[Λ2,0]]α) is

1

4
cij(α ∧ ei − θ ∧ Jei)⊗ (α ∧ ej − θ ∧ Jej).

If we further project on the component that commutes with J , we obtain

1

8
cij
(
(α∧ei−θ∧Jei)⊗(α∧ej−θ∧Jej)+(α∧Jei+θ∧ei)⊗(α∧Jej+θ∧ej)

)
;

taking norms, we find∣∣∣R̃′′∣∣∣2 ≥ 1

8

∑
i,j

c2ij ≥
1

8

∑
c2ii ≥

1

16n

(∑
cii
)2

=
1

16n
τ 2.

Integrating the formula of Proposition 4.2, we can now compute

0 =

∫
(2 |Ric′′|2 − 8

∣∣∣R̃′′∣∣∣2 − |∇∗∇Ω|2 − |φ|2 + 4〈ρh, φ〉 − 4〈ρh,∇∗∇Ω〉)

=

∫
(τ 2−8

∣∣∣R̃′′∣∣∣2−4n(τ−τ ∗)2−τ 2−4 |ρ∗0|
2−|φ|2+2τ |∇Ω|2−4τ |∇Ω|2+2τ |∇α|2)

=

∫
(−8

∣∣∣R̃′′∣∣∣2 − 4n(τ − τ ∗)2 − 4 |ρ∗0|
2 − |φ|2 − 4nτ(τ ∗ − τ)).
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Summing up, ∫
|φ|2 ≤

∫
−4nτ ∗(τ ∗ − τ)− 1

2n
τ 2.

If τ = 0, this implies that
∫

(τ ∗)2 is non-positive, hence τ ∗ = 0. By (7),
this is only possible if the structure is cokähler, giving the first case in the
statement.

Assume now that τ < 0. Observe that φ(ξ, Y ) = 0, because (4) implies

‖∇XΩ‖ = ‖∇JXΩ‖ .

By construction,

|φ|2 =
1

2

∑
1≤i,j≤2n

φ(Jei, ej)
2 =

1

2

∑
1≤i,j≤2n

(
〈∇eiω,∇ejω〉+ 〈∇eiα,∇ejα〉

))2
≥ 1

2

∑
1≤i≤2n

(
|∇eiω|

2 + |∇eiα|
2)2 ≥ 1

4n

( ∑
1≤i≤2n

(
|∇eiω|

2 + |∇eiα|
2))2

=
1

4n
(2n(τ ∗ − τ)− τ)2.

It follows that

1

4n

∫
(2n(τ ∗ − τ)− τ)2 ≤

∫ (
−4n(τ ∗ − τ)2 − 4nτ(τ ∗ − τ)− 1

2n
τ 2
)
;

by the Cauchy-Schwartz inequality,

1

V
5n
(∫

τ ∗ − τ
)2 ≤ ∫ 5n(τ ∗ − τ)2 ≤

∫ (
−(4n− 1)τ(τ ∗ − τ)− 3

4n
τ 2
)
.

Since τ is a constant, this is a second degree inequality in the variable∫
(τ ∗ − τ) with constant coefficients; solving explicitly, we find

1

V

∫
(τ ∗ − τ) ≤ 4n− 1 +

√
16n2 − 8n− 14

10n
(−τ).

The remaining part of the statement follows from Proposition 3.3.

As an immediate consequence, we find:

Corollary 4.8. Let (M, g, α, ω) be a compact, Einstein, almost cokähler
manifold. If either τ ≥ 0 or

∫
τ ∗ ≥ 0, then (M, g, α, ω) is Ricci-flat and

cokähler.
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In particular, in the case τ = 0 we recover the following result of [12]:

Corollary 4.9 ([12]). If (M, g, α, ω) is a compact, Einstein, almost cokähler
manifold on which the Reeb vector field is Killing, then (M, g, α, ω) is Ricci-
flat and cokähler.

Proof. The condition on the Reeb vector field implies that ∇α is skew-
symmetric, and therefore completely determined by dα. Since α is closed, it
is also parallel. This implies that τ = 0, so Corollary 4.8 applies.

5 Einstein almost cokähler manifolds which

are not cokähler

In this section we give a five-dimensional example of an Einstein almost
cokähler manifold which is not cokähler.

We consider a standard extension of a 4-dimensional Ricci nilsoliton (see
[20]), namely the Lie algebra g = 〈e1, e2, e3, e4, e5〉 defined by the equations

de1 =

√
3

2
e25+

1

2
e14, de2 =

√
3

2
e15+

1

2
e24, de3 = e12+e34, de4 = de5 = 0,

where 〈e1, e2, e3, e4, e5〉 is the dual basis for g∗ and eij is short for ei ∧ ej.
We define G to be the connected, simply connected Lie group with Lie

algebra g.

Proposition 5.1. The solvable Lie group G has an Einstein almost cokähler
structure which is not cokähler and satisfies

τ − τ ∗

τ
=

1

4
.

Proof. Let g be the left invariant metric on G given by

g = (e1)2 + (e2)2 + (e3)2 + (e4)2 + (e5)2.

One can check that g is an Einstein metric on G. Indeed, the Ricci curvature
tensor satisfies

Ric = −3

2
e1 ⊗ e1 − 3

2
e2 ⊗ e2 − 3

2
e3 ⊗ e3 − 3

2
e4 ⊗ e4 − 3

2
e5 ⊗ e5.

Take the pair (α, ω) of forms on G given by

α = e5, ω = e12 + e34.
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Then (α, ω, g) defines an almost cokähler structure on G since dα = dω = 0,
α ∧ ω2 6= 0 and g is compatible with (α, ω) in the sense given in section 2.
Moreover ρ∗ = −3

4
e12 − 3

2
e34, so

τ = −3

2
, τ ∗ = −9

8
.

Since τ ∗− τ is not zero, (α, ω, g) is not a cokähler structure. In fact, there is
no parallel left invariant 2-form on this Lie group, so no invariant cokähler
structure compatible with the metric g exists.

Remark 5.2. Even though this example is not compact, the value of τ−τ∗
τ

is consistent with the inequalities of Theorem 4.7. In fact, it is the smallest
value compatible with (2).

Remark 5.3. We note that a result in [15] asserts that no solvable uni-
modular Lie group admits a left invariant metric of strictly negative Ricci
curvature. In fact, it is easy to verify that the Lie group G of Proposition 5.1
is not unimodular; in particular, it does not have a uniform discrete subgroup,
i.e. a discrete subgroup Γ such that Γ\G is compact.
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[9] Bochner, S., Vector fields and Ricci curvature, Bull. Amer. Math. Soc.
52 (1946), 776-797.

[10] Boyer, C.P., Galicki, K., Einstein manifolds and contact geometry.
(English summary) Proc. Amer. Math. Soc. 129 (2001), no. 8, 2419–2430.

[11] Boyer, C.P., Galicki, K., Sasakian geometry, Oxford Mathematical
Monographs, Oxford University Press, Oxford, 2008.

[12] Cappelletti-Montano, B., Pastore, A.M., Einstein-like condi-
tions and cosymplectic geometry, J. Adv. Math. Stud. 3 (2010), 27-40.

[13] Cappelletti-Montano, B., de Nicola, A., Yudin, I., A survey
on cosymplectic geometry. Rev. Math. Phys. 25 (2013), 1343002, 55pp.

[14] Chinea, D., de León, M., Marrero, J.C., Topology of cosymplec-
tic manifolds, J. Math. Pures Appl. (9) 72 (6) (1993), 567-591.

[15] Dotti Miatello, I., Ricci curvature of left invariant metrics on solv-
able unimodular Lie groups, Math. Z. 180 (1982), 257-263.

[16] Goldberg, S.I., Integrability of almost Kähler manifolds, Proc. Amer.
Math. Soc. 21 (1969), 96-100.

[17] Goldberg, S.I., Yano, K., Integrability of almost cosymplectic struc-
tures, Pacific J. Math. 31 (1969), no.2, 373–382

[18] Gray, A., Minimal varieties and almost Hermitian submanifolds,
Michigan Math. J. 12 (1965), 273-287.

[19] Guillemin, V., Miranda, E., Pires, A. R., Codimension one sym-
plectic foliations and regular Poisson structures, Bull. Braz. Math. Soc. 42
(2011), 607-623.

17



[20] Heber, J., Noncompact homogeneous Einstein spaces, Invent. Math.
133 (1998), 279-352.

[21] Hirobe K., Oguro T., Sekigawa K., A remark on an example of a
6-dimensional Einstein almost-Kähler manifold, J. Geom. 88 (2008) 70–74.

[22] Koto, S., Some theorems on almost Kähkerian spaces, J. Math. Soc.
Japan 12 (1960), 422-433.

[23] Lauret, J., Finding Einstein solvmanifolds by a variational method,
Math. Z. 241 (2002), 83-99.

[24] Lauret, J., Einstein solvmanifolds are standard, Annals Math. 172
(2010), 1859-1877.

[25] Li, H., Topology of co-symplectic / co-Kähler manifolds, Asian J. Math.
12 (2008), 527-544.

[26] Libermann, P., Sur les automorphismes infinitesimaux des struc-
tures symplectiques et des structures de contact, in Collection Géometrie
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