In this paper, a positive definite Balancing Neumann–Neumann (BNN) solver for the linear elasticity system is constructed and analyzed. The solver implicitly eliminates the interior degrees of freedom in each subdomain and solves iteratively the resulting Schur complement, involving only interface displacements, using a BNN preconditioner based on the solution of a coarse elasticity problem and local elasticity problems with natural and essential boundary conditions. While the Schur complement becomes increasingly ill-conditioned as the materials becomes almost incompressible, the BNN preconditioned operator remains well conditioned. The main theoretical result of the paper shows that the proposed BNN method is scalable and quasi-optimal in the constant coefficient case. This bound holds for material parameters arbitrarily close to the incompressible limit. While this result is due to an underlying mixed formulation of the problem, both the interface problem and the preconditioner are positive definite. Numerical results in two and three dimensions confirm these good convergence properties and the robustness of the methods with respect to the almost incompressibility of the material.
BEIRAO DA VEIGA, L., Lovadina, C., Pavarino, L. (2006). Positive definite balancing Neumann-Neumann preconditioners for nearly incompressible elasticity. NUMERISCHE MATHEMATIK, 104(3), 271-296 [10.1007/s00211-006-0022-5].
Positive definite balancing Neumann-Neumann preconditioners for nearly incompressible elasticity
BEIRAO DA VEIGA, LOURENCO;
2006
Abstract
In this paper, a positive definite Balancing Neumann–Neumann (BNN) solver for the linear elasticity system is constructed and analyzed. The solver implicitly eliminates the interior degrees of freedom in each subdomain and solves iteratively the resulting Schur complement, involving only interface displacements, using a BNN preconditioner based on the solution of a coarse elasticity problem and local elasticity problems with natural and essential boundary conditions. While the Schur complement becomes increasingly ill-conditioned as the materials becomes almost incompressible, the BNN preconditioned operator remains well conditioned. The main theoretical result of the paper shows that the proposed BNN method is scalable and quasi-optimal in the constant coefficient case. This bound holds for material parameters arbitrarily close to the incompressible limit. While this result is due to an underlying mixed formulation of the problem, both the interface problem and the preconditioner are positive definite. Numerical results in two and three dimensions confirm these good convergence properties and the robustness of the methods with respect to the almost incompressibility of the material.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.