Given a finite group G, the bipartite divisor graph for its conjugacy class sizes is the bipartite graph with bipartition consisting of the set of conjugacy class sizes of G \ Z(G) (where Z(G) denotes the centre of G) and the set of prime numbers that divide these conjugacy class sizes, and with {p, n} being an edge if gcd(p, n) ≠ 1. In this paper we construct infinitely many groups whose bipartite divisor graph for their conjugacy class sizes is the complete bipartite graph K<inf>2,5</inf>, giving a solution to a question of Taeri [15].

Hafezieh, R., Spiga, P. (2015). Groups having complete bipartite divisor graphs for their conjugacy class sizes. RENDICONTI DEL SEMINARIO MATEMATICO DELL'UNIVERSITA' DI PADOVA, 133, 117-123 [10.4171/RSMUP/133-6].

Groups having complete bipartite divisor graphs for their conjugacy class sizes

SPIGA, PABLO
Ultimo
2015

Abstract

Given a finite group G, the bipartite divisor graph for its conjugacy class sizes is the bipartite graph with bipartition consisting of the set of conjugacy class sizes of G \ Z(G) (where Z(G) denotes the centre of G) and the set of prime numbers that divide these conjugacy class sizes, and with {p, n} being an edge if gcd(p, n) ≠ 1. In this paper we construct infinitely many groups whose bipartite divisor graph for their conjugacy class sizes is the complete bipartite graph K2,5, giving a solution to a question of Taeri [15].
Articolo in rivista - Articolo scientifico
Bipartite divisor graph; Conjugacy class size; Extra-special group; Algebra and Number Theory; Analysis; Geometry and Topology; Mathematical Physics
English
2015
133
117
123
none
Hafezieh, R., Spiga, P. (2015). Groups having complete bipartite divisor graphs for their conjugacy class sizes. RENDICONTI DEL SEMINARIO MATEMATICO DELL'UNIVERSITA' DI PADOVA, 133, 117-123 [10.4171/RSMUP/133-6].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/99637
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
Social impact