Let G be a finite transitive group of rank r. We give a short proof that the proportion of derangements in G is at most 1 - 1/r and we classify the permutation groups attaining this bound.

Guralnick, R., Isaacs, I., Spiga, P. (2015). On a relation between the rank and the proportion of derangements in finite transitive permutation groups. JOURNAL OF COMBINATORIAL THEORY. SERIES A, 136, 198-200 [10.1016/j.jcta.2015.07.003].

On a relation between the rank and the proportion of derangements in finite transitive permutation groups

SPIGA, PABLO
Ultimo
2015

Abstract

Let G be a finite transitive group of rank r. We give a short proof that the proportion of derangements in G is at most 1 - 1/r and we classify the permutation groups attaining this bound.
Articolo in rivista - Articolo scientifico
Derangements; Permutation groups; Rank; Discrete Mathematics and Combinatorics; Theoretical Computer Science; Computational Theory and Mathematics
English
2015
136
198
200
none
Guralnick, R., Isaacs, I., Spiga, P. (2015). On a relation between the rank and the proportion of derangements in finite transitive permutation groups. JOURNAL OF COMBINATORIAL THEORY. SERIES A, 136, 198-200 [10.1016/j.jcta.2015.07.003].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/99633
Citazioni
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
Social impact