We consider the discretization of a boundary value problem for a general linear second-order elliptic operator with smooth coefficients using the Virtual Element approach. As in [A. H. Schatz, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms, Math. Comput. 28 (1974) 959-962] the problem is supposed to have a unique solution, but the associated bilinear form is not supposed to be coercive. Contrary to what was previously done for Virtual Element Methods (as for instance in [L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini and A. Russo, Basic principles of virtual element methods, Math. Models Methods Appl. Sci. 23 (2013) 199-214]), we use here, in a systematic way, the L2-projection operators as designed in [B. Ahmad, A. Alsaedi, F. Brezzi, L. D. Marini and A. Russo, Equivalent projectors for virtual element methods, Comput. Math. Appl. 66 (2013) 376-391]. In particular, the present method does not reduce to the original Virtual Element Method of [L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini and A. Russo, Basic principles of virtual element methods, Math. Models Methods Appl. Sci. 23 (2013) 199-214] for simpler problems as the classical Laplace operator (apart from the lowest-order cases). Numerical experiments show the accuracy and the robustness of the method, and they show as well that a simple-minded extension of the method in [L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini and A. Russo, Basic principles of virtual element methods, Math. Models Methods Appl. Sci. 23 (2013) 199-214] to the case of variable coefficients produces, in general, sub-optimal results.
BEIRAO DA VEIGA, L., Brezzi, F., Marini, L., Russo, A. (2016). Virtual Element Method for general second-order elliptic problems on polygonal meshes. MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES, 26(4), 729-750 [10.1142/S0218202516500160].
Virtual Element Method for general second-order elliptic problems on polygonal meshes
BEIRAO DA VEIGA, LOURENCO;RUSSO, ALESSANDRO
2016
Abstract
We consider the discretization of a boundary value problem for a general linear second-order elliptic operator with smooth coefficients using the Virtual Element approach. As in [A. H. Schatz, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms, Math. Comput. 28 (1974) 959-962] the problem is supposed to have a unique solution, but the associated bilinear form is not supposed to be coercive. Contrary to what was previously done for Virtual Element Methods (as for instance in [L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini and A. Russo, Basic principles of virtual element methods, Math. Models Methods Appl. Sci. 23 (2013) 199-214]), we use here, in a systematic way, the L2-projection operators as designed in [B. Ahmad, A. Alsaedi, F. Brezzi, L. D. Marini and A. Russo, Equivalent projectors for virtual element methods, Comput. Math. Appl. 66 (2013) 376-391]. In particular, the present method does not reduce to the original Virtual Element Method of [L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini and A. Russo, Basic principles of virtual element methods, Math. Models Methods Appl. Sci. 23 (2013) 199-214] for simpler problems as the classical Laplace operator (apart from the lowest-order cases). Numerical experiments show the accuracy and the robustness of the method, and they show as well that a simple-minded extension of the method in [L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini and A. Russo, Basic principles of virtual element methods, Math. Models Methods Appl. Sci. 23 (2013) 199-214] to the case of variable coefficients produces, in general, sub-optimal results.File | Dimensione | Formato | |
---|---|---|---|
4 - Virtual Element Methods for general second order elliptic problem.PDF
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Dimensione
707.97 kB
Formato
Adobe PDF
|
707.97 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.