We consider the discretization of a boundary value problem for a general linear second-order elliptic operator with smooth coefficients using the Virtual Element approach. As in [A. H. Schatz, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms, Math. Comput. 28 (1974) 959-962] the problem is supposed to have a unique solution, but the associated bilinear form is not supposed to be coercive. Contrary to what was previously done for Virtual Element Methods (as for instance in [L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini and A. Russo, Basic principles of virtual element methods, Math. Models Methods Appl. Sci. 23 (2013) 199-214]), we use here, in a systematic way, the L2-projection operators as designed in [B. Ahmad, A. Alsaedi, F. Brezzi, L. D. Marini and A. Russo, Equivalent projectors for virtual element methods, Comput. Math. Appl. 66 (2013) 376-391]. In particular, the present method does not reduce to the original Virtual Element Method of [L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini and A. Russo, Basic principles of virtual element methods, Math. Models Methods Appl. Sci. 23 (2013) 199-214] for simpler problems as the classical Laplace operator (apart from the lowest-order cases). Numerical experiments show the accuracy and the robustness of the method, and they show as well that a simple-minded extension of the method in [L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini and A. Russo, Basic principles of virtual element methods, Math. Models Methods Appl. Sci. 23 (2013) 199-214] to the case of variable coefficients produces, in general, sub-optimal results.

BEIRAO DA VEIGA, L., Brezzi, F., Marini, L., Russo, A. (2016). Virtual Element Method for general second-order elliptic problems on polygonal meshes. MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES, 26(4), 729-750 [10.1142/S0218202516500160].

Virtual Element Method for general second-order elliptic problems on polygonal meshes

BEIRAO DA VEIGA, LOURENCO;RUSSO, ALESSANDRO
2016

Abstract

We consider the discretization of a boundary value problem for a general linear second-order elliptic operator with smooth coefficients using the Virtual Element approach. As in [A. H. Schatz, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms, Math. Comput. 28 (1974) 959-962] the problem is supposed to have a unique solution, but the associated bilinear form is not supposed to be coercive. Contrary to what was previously done for Virtual Element Methods (as for instance in [L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini and A. Russo, Basic principles of virtual element methods, Math. Models Methods Appl. Sci. 23 (2013) 199-214]), we use here, in a systematic way, the L2-projection operators as designed in [B. Ahmad, A. Alsaedi, F. Brezzi, L. D. Marini and A. Russo, Equivalent projectors for virtual element methods, Comput. Math. Appl. 66 (2013) 376-391]. In particular, the present method does not reduce to the original Virtual Element Method of [L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini and A. Russo, Basic principles of virtual element methods, Math. Models Methods Appl. Sci. 23 (2013) 199-214] for simpler problems as the classical Laplace operator (apart from the lowest-order cases). Numerical experiments show the accuracy and the robustness of the method, and they show as well that a simple-minded extension of the method in [L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini and A. Russo, Basic principles of virtual element methods, Math. Models Methods Appl. Sci. 23 (2013) 199-214] to the case of variable coefficients produces, in general, sub-optimal results.
Articolo in rivista - Articolo scientifico
Diffusion-convection-reaction problems; Polygonal decompositions; Virtual Element Methods;
Polygonal decompositions; Virtual Element Methods; diffusion–convection–reaction problems
English
28-dic-2015
2016
26
4
729
750
reserved
BEIRAO DA VEIGA, L., Brezzi, F., Marini, L., Russo, A. (2016). Virtual Element Method for general second-order elliptic problems on polygonal meshes. MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES, 26(4), 729-750 [10.1142/S0218202516500160].
File in questo prodotto:
File Dimensione Formato  
4 - Virtual Element Methods for general second order elliptic problem.PDF

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 707.97 kB
Formato Adobe PDF
707.97 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/99422
Citazioni
  • Scopus 288
  • ???jsp.display-item.citation.isi??? 252
Social impact