We prove second-order convergence of the conservative variable and its flux in the high-order MFD method. The convergence results are proved for unstructured polyhedral meshes and full tensor diffusion coefficients. For the case of non-constant coefficients, we also develop a new family of high-order MFD methods. Theoretical result are confirmed through numerical experiments. © Springer-Verlag 2009.

BEIRAO DA VEIGA, L., Lipnikov, K., Manzini, G. (2009). Convergence analysis of the high-order mimetic finite difference method. NUMERISCHE MATHEMATIK, 113(3), 325-356 [10.1007/s00211-009-0234-6].

Convergence analysis of the high-order mimetic finite difference method

BEIRAO DA VEIGA, LOURENCO
Primo
;
2009

Abstract

We prove second-order convergence of the conservative variable and its flux in the high-order MFD method. The convergence results are proved for unstructured polyhedral meshes and full tensor diffusion coefficients. For the case of non-constant coefficients, we also develop a new family of high-order MFD methods. Theoretical result are confirmed through numerical experiments. © Springer-Verlag 2009.
Articolo in rivista - Articolo scientifico
Stability and convergence of numerical methods
English
2009
113
3
325
356
none
BEIRAO DA VEIGA, L., Lipnikov, K., Manzini, G. (2009). Convergence analysis of the high-order mimetic finite difference method. NUMERISCHE MATHEMATIK, 113(3), 325-356 [10.1007/s00211-009-0234-6].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/99169
Citazioni
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 52
Social impact