We use Bott–Chern cohomology to measure the non-Kählerianity of 6-dimensional nilmanifolds endowed with the invariant complex structures in Ceballos et al.’s (J Geom Anal, 2014. doi:10.1007/s12220-014-9548-4) classification. We investigate the existence of pluriclosed metric in connection with such a classification.

Angella, D., Franzini, M., & Rossi, F. (2015). Degree of non-Kählerianity for 6-dimensional nilmanifolds. MANUSCRIPTA MATHEMATICA, 148(1-2), 177-211 [10.1007/s00229-015-0734-x].

Degree of non-Kählerianity for 6-dimensional nilmanifolds

ROSSI, FEDERICO ALBERTO
Ultimo
2015

Abstract

We use Bott–Chern cohomology to measure the non-Kählerianity of 6-dimensional nilmanifolds endowed with the invariant complex structures in Ceballos et al.’s (J Geom Anal, 2014. doi:10.1007/s12220-014-9548-4) classification. We investigate the existence of pluriclosed metric in connection with such a classification.
Articolo in rivista - Articolo scientifico
32Q57; 53C558; 57T15;
English
177
211
35
Angella, D., Franzini, M., & Rossi, F. (2015). Degree of non-Kählerianity for 6-dimensional nilmanifolds. MANUSCRIPTA MATHEMATICA, 148(1-2), 177-211 [10.1007/s00229-015-0734-x].
Angella, D; Franzini, M; Rossi, F
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/99142
Citazioni
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 11
Social impact