We use Bott–Chern cohomology to measure the non-Kählerianity of 6-dimensional nilmanifolds endowed with the invariant complex structures in Ceballos et al.’s (J Geom Anal, 2014. doi:10.1007/s12220-014-9548-4) classification. We investigate the existence of pluriclosed metric in connection with such a classification.
Angella, D., Franzini, M., Rossi, F. (2015). Degree of non-Kählerianity for 6-dimensional nilmanifolds. MANUSCRIPTA MATHEMATICA, 148(1-2), 177-211 [10.1007/s00229-015-0734-x].
Degree of non-Kählerianity for 6-dimensional nilmanifolds
ROSSI, FEDERICO ALBERTOUltimo
2015
Abstract
We use Bott–Chern cohomology to measure the non-Kählerianity of 6-dimensional nilmanifolds endowed with the invariant complex structures in Ceballos et al.’s (J Geom Anal, 2014. doi:10.1007/s12220-014-9548-4) classification. We investigate the existence of pluriclosed metric in connection with such a classification.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.