We construct and analyze an overlapping Schwarz preconditioner for elliptic problems discretized with isogeometric analysis. The preconditioner is based on partitioning the domain of the problem into overlapping subdomains, solving local isogeometric problems on these subdomains, and solving an additional coarse isogeometric problem associated with the subdomain mesh. We develop an h-analysis of the preconditioner, showing in particular that the resulting algorithm is scalable and its convergence rate depends linearly on the ratio between subdomain and "overlap sizes" for fixed polynomial degree p and regularity k of the basis functions. Numerical results in two- and three-dimensional tests show the good convergence properties of the preconditioner with respect to the isogeometric discretization parameters h, p, k, number of subdomains N, overlap size, and also jumps in the coefficients of the elliptic operator. © 2012 Society for Industrial and Applied Mathematics.

BEIRAO DA VEIGA, L., Cho, D., Pavarino, L., Scacchi, S. (2012). Overlapping schwarz methods for isogeometric analysis. SIAM JOURNAL ON NUMERICAL ANALYSIS, 50(3), 1394-1416 [10.1137/110833476].

Overlapping schwarz methods for isogeometric analysis

BEIRAO DA VEIGA, LOURENCO
Primo
;
2012

Abstract

We construct and analyze an overlapping Schwarz preconditioner for elliptic problems discretized with isogeometric analysis. The preconditioner is based on partitioning the domain of the problem into overlapping subdomains, solving local isogeometric problems on these subdomains, and solving an additional coarse isogeometric problem associated with the subdomain mesh. We develop an h-analysis of the preconditioner, showing in particular that the resulting algorithm is scalable and its convergence rate depends linearly on the ratio between subdomain and "overlap sizes" for fixed polynomial degree p and regularity k of the basis functions. Numerical results in two- and three-dimensional tests show the good convergence properties of the preconditioner with respect to the isogeometric discretization parameters h, p, k, number of subdomains N, overlap size, and also jumps in the coefficients of the elliptic operator. © 2012 Society for Industrial and Applied Mathematics.
Articolo in rivista - Articolo scientifico
domain decomposition methods; overlapping Schwarz; scalable preconditioners; isogeometric analysis; finite elements; NURBS
English
2012
50
3
1394
1416
none
BEIRAO DA VEIGA, L., Cho, D., Pavarino, L., Scacchi, S. (2012). Overlapping schwarz methods for isogeometric analysis. SIAM JOURNAL ON NUMERICAL ANALYSIS, 50(3), 1394-1416 [10.1137/110833476].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/98817
Citazioni
  • Scopus 77
  • ???jsp.display-item.citation.isi??? 64
Social impact