The virtual element method (VEM) is a recent technology that can make use of very general polygonal/polyhedral meshes without the need to integrate complex nonpolynomial functions on the elements and preserving an optimal order of convergence. In this article, we develop for the first time, the VEM for parabolic problems on polygonal meshes, considering time-dependent diffusion as our model problem. After presenting the scheme, we develop a theoretical analysis and show the practical behavior of the proposed method through a large array of numerical tests.

Vacca, G., BEIRAO DA VEIGA, L. (2015). Virtual element methods for parabolic problems on polygonal meshes. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 31(6), 2110-2134 [10.1002/num.21982].

Virtual element methods for parabolic problems on polygonal meshes

VACCA, GIUSEPPE
;
BEIRAO DA VEIGA, LOURENCO
2015

Abstract

The virtual element method (VEM) is a recent technology that can make use of very general polygonal/polyhedral meshes without the need to integrate complex nonpolynomial functions on the elements and preserving an optimal order of convergence. In this article, we develop for the first time, the VEM for parabolic problems on polygonal meshes, considering time-dependent diffusion as our model problem. After presenting the scheme, we develop a theoretical analysis and show the practical behavior of the proposed method through a large array of numerical tests.
Articolo in rivista - Articolo scientifico
parabolic problems; polygonal meshes; virtual elements;
parabolic problems; polygonal meshes; virtual elements
English
2015
31
6
2110
2134
reserved
Vacca, G., BEIRAO DA VEIGA, L. (2015). Virtual element methods for parabolic problems on polygonal meshes. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 31(6), 2110-2134 [10.1002/num.21982].
File in questo prodotto:
File Dimensione Formato  
2015-Beirao_Vacca-NUMPDE.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 371.86 kB
Formato Adobe PDF
371.86 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/98160
Citazioni
  • Scopus 160
  • ???jsp.display-item.citation.isi??? 155
Social impact