The virtual element method (VEM) is a recent technology that can make use of very general polygonal/polyhedral meshes without the need to integrate complex nonpolynomial functions on the elements and preserving an optimal order of convergence. In this article, we develop for the first time, the VEM for parabolic problems on polygonal meshes, considering time-dependent diffusion as our model problem. After presenting the scheme, we develop a theoretical analysis and show the practical behavior of the proposed method through a large array of numerical tests.
Vacca, G., & Beirao Da Veiga, L. (2015). Virtual element methods for parabolic problems on polygonal meshes. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 31(6), 2110-2134 [10.1002/num.21982].
Citazione: | Vacca, G., & Beirao Da Veiga, L. (2015). Virtual element methods for parabolic problems on polygonal meshes. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 31(6), 2110-2134 [10.1002/num.21982]. | |
Tipo: | Articolo in rivista - Articolo scientifico | |
Carattere della pubblicazione: | Scientifica | |
Presenza di un coautore afferente ad Istituzioni straniere: | No | |
Titolo: | Virtual element methods for parabolic problems on polygonal meshes | |
Autori: | Vacca, G; Beirao Da Veiga, L | |
Autori: | ||
Data di pubblicazione: | 2015 | |
Lingua: | English | |
Rivista: | NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1002/num.21982 | |
Appare nelle tipologie: | 01 - Articolo su rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
2015-Beirao_Vacca-NUMPDE.pdf | Publisher's version | Administrator Richiedi una copia |