We prove the existence of solutions for the singularly perturbed Schrödinger-Newton system {(h{stroke}2 Δ ψ - V (x) ψ + U ψ = 0; h{stroke}2 Δ U + 4 π γ | ψ |2 = 0) in R3 with an electric potential V that decays polynomially fast at infinity. The solution ψ concentrates, as h{stroke} → 0, around (structurally stable) critical points of the electric potential. As a particular case, isolated strict extrema of V are allowed. © 2010 Elsevier Ltd. All rights reserved.

Secchi, S. (2010). A note on Schrödinger-Newton systems with decaying electric potential. NONLINEAR ANALYSIS, 72(9-10), 3842-3856 [10.1016/j.na.2010.01.021].

A note on Schrödinger-Newton systems with decaying electric potential

SECCHI, SIMONE
2010

Abstract

We prove the existence of solutions for the singularly perturbed Schrödinger-Newton system {(h{stroke}2 Δ ψ - V (x) ψ + U ψ = 0; h{stroke}2 Δ U + 4 π γ | ψ |2 = 0) in R3 with an electric potential V that decays polynomially fast at infinity. The solution ψ concentrates, as h{stroke} → 0, around (structurally stable) critical points of the electric potential. As a particular case, isolated strict extrema of V are allowed. © 2010 Elsevier Ltd. All rights reserved.
Articolo in rivista - Articolo scientifico
Schrödinger-Newton systems
English
2010
72
9-10
3842
3856
none
Secchi, S. (2010). A note on Schrödinger-Newton systems with decaying electric potential. NONLINEAR ANALYSIS, 72(9-10), 3842-3856 [10.1016/j.na.2010.01.021].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/9546
Citazioni
  • Scopus 57
  • ???jsp.display-item.citation.isi??? 54
Social impact