We express the zeta function associated with the Laplacian operator on Sr1 × M in terms of the zeta function associated with the Laplacian on M, where M is a compact connected Riemannian manifold. This gives formulae for the partition function of the associated physical model at low and high temperature for any compact domain M. Furthermore, we provide an exact formula for the zeta function at any value of r when M is a D-dimensional box or a D-dimensional torus; this allows a rigorous calculation of the zeta invariants and the analysis of the main thermodynamic functions associated with the physical models at finite temperature.

Ortenzi, G., Spreafico, M. (2004). Zeta function regularization for a scalar field in a compact domain. JOURNAL OF PHYSICS. A, MATHEMATICAL AND GENERAL, 37(47), 11499-11517 [10.1088/0305-4470/37/47/018].

Zeta function regularization for a scalar field in a compact domain

Ortenzi, G;Spreafico, M
2004

Abstract

We express the zeta function associated with the Laplacian operator on Sr1 × M in terms of the zeta function associated with the Laplacian on M, where M is a compact connected Riemannian manifold. This gives formulae for the partition function of the associated physical model at low and high temperature for any compact domain M. Furthermore, we provide an exact formula for the zeta function at any value of r when M is a D-dimensional box or a D-dimensional torus; this allows a rigorous calculation of the zeta invariants and the analysis of the main thermodynamic functions associated with the physical models at finite temperature.
Articolo in rivista - Articolo scientifico
Casimir pressure; Zeta function
English
11499
11517
19
Ortenzi, G., Spreafico, M. (2004). Zeta function regularization for a scalar field in a compact domain. JOURNAL OF PHYSICS. A, MATHEMATICAL AND GENERAL, 37(47), 11499-11517 [10.1088/0305-4470/37/47/018].
File in questo prodotto:
File Dimensione Formato  
Ortenzi-2004-J Phys A Math Gen-VoR.pdf

Solo gestori archivio

Descrizione: Article
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 204.17 kB
Formato Adobe PDF
204.17 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/9483
Citazioni
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 18
Social impact