In this paper we establish an existence and regularity result for solutions to the problem minimize∫ Ω L(|∇ u(x)|),dx on u: u-u -0 in W1,1-0(Ω) for boundary data that are constant on each connected component of the boundary of Ω. The Lagrangean L belongs to a class that contains both extended valued Lagrangeans and Lagrangeans with linear growth. Regularity means that the solution tilde w is Lipschitz continuous and that, in addition, |L′(∇ ̃ w||-∞ is bounded. © 2008 Springer-Verlag.
Cellina, A., & Vornicescu, M. (2009). On the existence of solutions to a special variational problem. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 35(2), 263-270.
Citazione: | Cellina, A., & Vornicescu, M. (2009). On the existence of solutions to a special variational problem. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 35(2), 263-270. |
Tipo: | Articolo in rivista - Articolo scientifico |
Carattere della pubblicazione: | Scientifica |
Titolo: | On the existence of solutions to a special variational problem |
Autori: | Cellina, A; Vornicescu, M |
Autori: | |
Data di pubblicazione: | 2009 |
Lingua: | English |
Rivista: | CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s00526-008-0211-4 |
Appare nelle tipologie: | 01 - Articolo su rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
estesi_fin_corr.pdf | N/A | Open Access Visualizza/Apri |