Refining the notion of an ideal triangulation of a compact three-manifold, we provide in this paper a combinatorial presentation of the set of pairs (M,α), where M is a three-manifold and α is a collection of properly embedded arcs. We also show that certain well-understood combinatorial moves are sufficient to relate to each other any two refined triangulations representing the same (M,α). Our proof does not assume the Matveev-Piergallini calculus for ideal triangulations, and actually easily implies this calculus.
Amendola, G. (2005). A calculus for ideal triangulations of three-manifolds with embedded arcs. MATHEMATISCHE NACHRICHTEN, 278(9), 975-994.
Citazione: | Amendola, G. (2005). A calculus for ideal triangulations of three-manifolds with embedded arcs. MATHEMATISCHE NACHRICHTEN, 278(9), 975-994. |
Tipo: | Articolo in rivista - Articolo scientifico |
Carattere della pubblicazione: | Scientifica |
Titolo: | A calculus for ideal triangulations of three-manifolds with embedded arcs |
Autori: | Amendola, G |
Autori: | |
Data di pubblicazione: | 2005 |
Lingua: | English |
Rivista: | MATHEMATISCHE NACHRICHTEN |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1002/mana.200310285 |
Appare nelle tipologie: | 01 - Articolo su rivista |