We classify all closed non-orientable P²-irreducible 3-manifolds having complexity up to 6 and we describe some having complexity 7. We show in particular that there is no such manifold with complexity less than 6, and that those having complexity 6 are precisely the 4 flat non-orientable ones. The manifolds having complexity 7 we describe are Seifert manifolds of type H²xS¹, manifolds of type Sol, and manifolds with non-trivial JSJ decomposition.
Amendola, G., & Martelli, B. (2003). Non-orientable 3-manifolds of small complexity. TOPOLOGY AND ITS APPLICATIONS, 133(2), 157-178.
Citazione: | Amendola, G., & Martelli, B. (2003). Non-orientable 3-manifolds of small complexity. TOPOLOGY AND ITS APPLICATIONS, 133(2), 157-178. |
Tipo: | Articolo in rivista - Articolo scientifico |
Carattere della pubblicazione: | Scientifica |
Titolo: | Non-orientable 3-manifolds of small complexity |
Autori: | Amendola, G; Martelli, B |
Autori: | |
Data di pubblicazione: | 2003 |
Lingua: | English |
Rivista: | TOPOLOGY AND ITS APPLICATIONS |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/S0166-8641(03)00043-9 |
Appare nelle tipologie: | 01 - Articolo su rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.