We give a simple proof of a result of R. Rochberg and M. H. Taibleson that various maximal operators on a homogeneous tree, including the Hardy-Littlewood and spherical maximal operators, are of weak type (1, 1). This result extends to corresponding maximal operators on a transitive group of isometrics of the tree, and in particular for (nonabelian finitely generated) free groups.

Cowling, M., Meda, S., & Setti, A. (2010). A weak type $(1,1)$ estimate for a maximal operator on a group of isometries of homogeneous trees. COLLOQUIUM MATHEMATICUM, 118(1), 223-232 [10.4064/cm118-1-12].

A weak type $(1,1)$ estimate for a maximal operator on a group of isometries of homogeneous trees

MEDA, STEFANO;
2010

Abstract

We give a simple proof of a result of R. Rochberg and M. H. Taibleson that various maximal operators on a homogeneous tree, including the Hardy-Littlewood and spherical maximal operators, are of weak type (1, 1). This result extends to corresponding maximal operators on a transitive group of isometrics of the tree, and in particular for (nonabelian finitely generated) free groups.
No
Articolo in rivista - Articolo scientifico
Scientifica
Weak type 1 estimates; homogeneous tree; maximal operator
English
Cowling, M., Meda, S., & Setti, A. (2010). A weak type $(1,1)$ estimate for a maximal operator on a group of isometries of homogeneous trees. COLLOQUIUM MATHEMATICUM, 118(1), 223-232 [10.4064/cm118-1-12].
Cowling, M; Meda, S; Setti, A
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10281/8609
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 4
Social impact