Gaudin algebras form a family of maximal commutative subalgebras in the tensor product of n copies of the universal enveloping algebra U(g) of a semisimple Lie algebra g. This family is parameterized by collections of pairwise distinct complex numbers z1, . . ., zn. We obtain some new commutative subalgebras in U(g)⊗n} as limit cases of Gaudin subalgebras. These commutative subalgebras turn to be related to the Hamiltonians of bending flows and to the Gelfand-Tsetlin bases. We use this to prove the simplicity of spectrum in the Gaudin model for some new cases.
Chervov, A., Falqui, G., & Rybnikov, L. (2010). Limits of Gaudin Algebras, Quantization of Bending Flows, Jucys–Murphy Elements and Gelfand–Tsetlin Bases. LETTERS IN MATHEMATICAL PHYSICS, 91(2), 129-150 [10.1007/s11005-010-0371-y].
Citazione: | Chervov, A., Falqui, G., & Rybnikov, L. (2010). Limits of Gaudin Algebras, Quantization of Bending Flows, Jucys–Murphy Elements and Gelfand–Tsetlin Bases. LETTERS IN MATHEMATICAL PHYSICS, 91(2), 129-150 [10.1007/s11005-010-0371-y]. | |
Tipo: | Articolo in rivista - Articolo scientifico | |
Carattere della pubblicazione: | Scientifica | |
Presenza di un coautore afferente ad Istituzioni straniere: | Si | |
Titolo: | Limits of Gaudin Algebras, Quantization of Bending Flows, Jucys–Murphy Elements and Gelfand–Tsetlin Bases | |
Autori: | Chervov, A; Falqui, G; Rybnikov, L | |
Autori: | ||
Data di pubblicazione: | 2010 | |
Lingua: | English | |
Rivista: | LETTERS IN MATHEMATICAL PHYSICS | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s11005-010-0371-y | |
Appare nelle tipologie: | 01 - Articolo su rivista |