This paper first presents a condensed state of art on multiresolution analysis using polyharmonic splines: definition and main properties of polyharmonic splines, construction of B-splines and wavelets, decomposition and reconstruction filters; properties of the so-obtained operators, convergence result and applications are given. Second this paper presents some new results on this topic: scattered data wavelet, new polyharmonic scaling functions and associated filters. Fourier transform is of extensive use to derive the tools of the various multiresolution analysis. © 2008 Springer Science+Business Media, LLC.
Rabut, C., & Rossini, M.F. (2008). Polyharmonic multiresolution analysis: an overview and some new results. NUMERICAL ALGORITHMS, 48(1-3), 135-160 [10.1007/s11075-008-9173-z].
Citazione: | Rabut, C., & Rossini, M.F. (2008). Polyharmonic multiresolution analysis: an overview and some new results. NUMERICAL ALGORITHMS, 48(1-3), 135-160 [10.1007/s11075-008-9173-z]. | |
Tipo: | Articolo in rivista - Articolo scientifico | |
Carattere della pubblicazione: | Scientifica | |
Titolo: | Polyharmonic multiresolution analysis: an overview and some new results | |
Autori: | Rabut, C; Rossini, MF | |
Autori: | ||
Data di pubblicazione: | 2008 | |
Lingua: | English | |
Rivista: | NUMERICAL ALGORITHMS | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s11075-008-9173-z | |
Appare nelle tipologie: | 01 - Articolo su rivista |