We introduce a class of special geometries associated to the choice of a differential graded algebra contained in \Lambda^*\R^n. We generalize some known embedding results, that effectively characterize the real analytic Riemannian manifolds that can be realized as submanifolds of a Riemannian manifold with special holonomy, to this more general context. In particular, we consider the case of hypersurfaces inside nearly-Kähler and \alpha-Einstein-Sasaki manifolds, proving that the corresponding evolution equations always admit a solution in the real analytic case.
Conti, D. (2011). Embedding into manifolds with torsion. MATHEMATISCHE ZEITSCHRIFT, 268(3-4), 725-751.
Citazione: | Conti, D. (2011). Embedding into manifolds with torsion. MATHEMATISCHE ZEITSCHRIFT, 268(3-4), 725-751. |
Tipo: | Articolo in rivista - Articolo scientifico |
Carattere della pubblicazione: | Scientifica |
Presenza di un coautore afferente ad Istituzioni straniere: | No |
Titolo: | Embedding into manifolds with torsion |
Autori: | Conti, D |
Autori: | |
Data di pubblicazione: | 2011 |
Lingua: | English |
Rivista: | MATHEMATISCHE ZEITSCHRIFT |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s00209-010-0692-7 |
Appare nelle tipologie: | 01 - Articolo su rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
torsion.pdf | Other attachments | Open Access Visualizza/Apri |