Mutations of voltage-gated Na+ channels are the most common known cause of genetically determined epilepsy; Nav1.1 (SCN1A) is the most frequent target. They can cause both mild and severe forms, also in patients harboring the same mutation. We have recently characterized in a family with extreme phenotypes the first epileptogenic folding-defective Na + channel mutant (Nav1.1-M1841T), whose loss of function is attenuated by interactions with associated proteins and drugs. We hypothesized that in vivo variability of the interactions may modulate the functional effect and thus the phenotype (Rusconi et al., 2007). Here we characterize another Nav1.1 folding-defective mutant (Na v1.1-R1916G) that, however, has been identified in a GEFS+ family with relatively mild phenotypes. This novel mutant shows a number of specific characteristics, but, similarly to Nav1.1-M1841T, it can be rescued by interactions with associated proteins and drugs. Thus, loss of function caused by folding defects that can be attenuated by molecular interactions may be a common pathogenic mechanism for Nav1.1 epileptogenic mutants. Folding defects can be present also in families showing only mild phenotypes in which, however, severe phenotypes could emerge within a permissive genetic background.

Rusconi, R., Combi, R., Cestèle, S., Grioni, D., Franceschetti, S., Dalpra', L., et al. (2009). A rescuable folding defective Nav1.1 (SCN1A) Na+channel mutant causes GEFS+: common mechanism in Nav1.1 related epilepsies?. HUMAN MUTATION, 30(7), E747-E760 [10.1002/humu.21041].

A rescuable folding defective Nav1.1 (SCN1A) Na+channel mutant causes GEFS+: common mechanism in Nav1.1 related epilepsies?

COMBI, ROMINA;DALPRA', LEDA;
2009

Abstract

Mutations of voltage-gated Na+ channels are the most common known cause of genetically determined epilepsy; Nav1.1 (SCN1A) is the most frequent target. They can cause both mild and severe forms, also in patients harboring the same mutation. We have recently characterized in a family with extreme phenotypes the first epileptogenic folding-defective Na + channel mutant (Nav1.1-M1841T), whose loss of function is attenuated by interactions with associated proteins and drugs. We hypothesized that in vivo variability of the interactions may modulate the functional effect and thus the phenotype (Rusconi et al., 2007). Here we characterize another Nav1.1 folding-defective mutant (Na v1.1-R1916G) that, however, has been identified in a GEFS+ family with relatively mild phenotypes. This novel mutant shows a number of specific characteristics, but, similarly to Nav1.1-M1841T, it can be rescued by interactions with associated proteins and drugs. Thus, loss of function caused by folding defects that can be attenuated by molecular interactions may be a common pathogenic mechanism for Nav1.1 epileptogenic mutants. Folding defects can be present also in families showing only mild phenotypes in which, however, severe phenotypes could emerge within a permissive genetic background.
Articolo in rivista - Articolo scientifico
Calmodulin; Current; Epilepsy; FGF; Folding; GEFS; +; Nedd; SCN1A; SMEI; Sodium; Trafficking;
English
2009
30
7
E747
E760
none
Rusconi, R., Combi, R., Cestèle, S., Grioni, D., Franceschetti, S., Dalpra', L., et al. (2009). A rescuable folding defective Nav1.1 (SCN1A) Na+channel mutant causes GEFS+: common mechanism in Nav1.1 related epilepsies?. HUMAN MUTATION, 30(7), E747-E760 [10.1002/humu.21041].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/7886
Citazioni
  • Scopus 53
  • ???jsp.display-item.citation.isi??? 51
Social impact