The main subject of this thesis is the study, by a variational approach, of semilinear elliptic problems with measure data. Starting with a semilinear problem with unique solution, we introduce a parametrized perturbation and study the bifurcation phenomena giving rise to further solutions. The main feature is that we are able to use a direct variational approach, even when the semilinearity has no growth assumptions. In this setting, we prove bifurcation results in the line of classical results of Boehme-Marino and Rabinowitz and also global existence results.

(2015). NONTRIVIAL SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS WITH MEASURE DATA. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2015).

NONTRIVIAL SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS WITH MEASURE DATA

SCAGLIA, MICHELE
2015

Abstract

The main subject of this thesis is the study, by a variational approach, of semilinear elliptic problems with measure data. Starting with a semilinear problem with unique solution, we introduce a parametrized perturbation and study the bifurcation phenomena giving rise to further solutions. The main feature is that we are able to use a direct variational approach, even when the semilinearity has no growth assumptions. In this setting, we prove bifurcation results in the line of classical results of Boehme-Marino and Rabinowitz and also global existence results.
DEGIOVANNI, MARCO
Semilinear elliptic equations, right hand side measure, variational methods, bifurcation problems
MAT/05 - ANALISI MATEMATICA
English
20-mar-2015
Scuola di dottorato di Scienze
MATEMATICA PURA E APPLICATA - 23R
25
2011/2012
open
(2015). NONTRIVIAL SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS WITH MEASURE DATA. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2015).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_734481.pdf

accesso aperto

Descrizione: Tesi dottorato
Tipologia di allegato: Doctoral thesis
Dimensione 398.89 kB
Formato Adobe PDF
398.89 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/77845
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact