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Introduction

Let Ω be a bounded open subset of Rn, with n ≥ 2, and let a ∈ L∞(Ω;Mn,n), where

Mn,n denotes the space of n× n matrices. Assume that there exists ν > 0 satisfying

(a(x)ξ) · ξ ≥ ν |ξ|2 for a.e. x ∈ Ω and every ξ ∈ Rn

and denote by A,A∗ : W 1,2
0 (Ω) → W−1,2(Ω) the operators defined as Au = −div(a∇u),

A∗u = −div(at∇u).

The regularity results of De Giorgi [12], Nash [23] and Stampacchia (see [27, 28])

ensure that every v ∈ W 1,2
0 (Ω), with A∗v ∈ W−1,q(Ω) for some q > n, is continuous and

bounded on Ω. As observed in [27], this fact allows to define, by duality, a generalized

solution u of

(1)

{
−div(a∇u) = µ in Ω ,

u = 0 on ∂Ω ,

for any µ ∈ Mb(Ω), the space of (signed) Radon measures with bounded total variation.

More precisely, for every µ ∈Mb(Ω), there exists one and only one u satisfying

(2)


u ∈ D′(Ω) ,

〈u,A∗v〉 =

∫
Ω

v dµ for every v ∈ W 1,2
0 (Ω) with A∗v ∈ C∞c (Ω) .

According to [27, Définition 9.1], it will be considered as the generalized solution of (1).

Moreover, such a solution u satisfies
u ∈

⋂
p< n

n−1

W 1,p
0 (Ω) ⊆

⋂
r< n

n−2

Lr(Ω) ,

〈A∗v, u〉 =

∫
Ω

v dµ for every v ∈ W 1,2
0 (Ω) with A∗v ∈

⋃
q>n

W−1,q(Ω) .

In particular, u satisfies (2) if and only if

(3)


u ∈ L1(Ω) ,∫

Ω

uA∗v dx =

∫
Ω

v dµ for every v ∈ W 1,2
0 (Ω) with A∗v ∈ L∞(Ω) .

iii



iv INTRODUCTION

If a and ∂Ω are smooth enough to guarantee that{
v ∈ W 1,2

0 (Ω) : A∗v ∈ C∞c (Ω)
}
⊆
{
v ∈ C2(Ω) : v = 0 on ∂Ω

}
⊆
{
v ∈ W 1,2

0 (Ω) : A∗v ∈ L∞(Ω)
}
,

then an equivalent reformulation of (3) is given by
u ∈ L1(Ω) ,∫

Ω

uA∗v dx =

∫
Ω

v dµ for every v ∈ C2(Ω) with v = 0 on ∂Ω .

A first important development of this topic has concerned quasilinear problems of the

form {
−div(α(x,∇u)) = µ in Ω ,

u = 0 on ∂Ω ,

where α : Ω×Rn −→ Rn satisfies assumptions of Leray-Lions type. In such a case, it is a

challenging open question to give a definition of generalized solution which provides both

existence and uniqueness for any µ ∈Mb(Ω). Let us refer the reader to [2, 4, 11, 30] and

references therein.

A second development has concerned semilinear problems of the form

(4)

{
−div(a∇u) + g(u) = µ in Ω ,

u = 0 on ∂Ω ,

where g : R → R is a nondecreasing, continuous function, whose study started with the

work of Brezis and Strauss [7], in the case µ ∈ L1(Ω), and will be the object of this thesis.

First of all, u is said to be a generalized solution of (4) if

(5)


u ∈ L1(Ω) , g(u) ∈ L1(Ω) ,∫

Ω

uA∗v dx+

∫
Ω

g(u) v dx =

∫
Ω

v dµ

for every v ∈ W 1,2
0 (Ω) with A∗v ∈ L∞(Ω) .

Let us mention that such a solution u is unique whenever µ ∈ Mb(Ω) and does exist

if µ ∈ L1(Ω). If µ ∈ Mb(Ω), then subtle existence/nonexistence phenomena occur, as

described in [1, 3, 18, 19]. Let us mention in particular [6], which provides also an overview

on the whole subject.

Assume now that a(x) is symmetric for a.e. x ∈ Ω. In spite of the fact that (4) looks

as the Euler-Lagrange equation of the functional

J(u) =
1

2

∫
Ω

(a∇u) · ∇u dx+

∫
Ω

G(u) dx−
∫

Ω

u dµ , G(s) =

∫ s

0

g(t) dt ,
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the application of variational methods to (4) seems to be impossible, as in general the

solution u is not expected to belong to W 1,2(Ω). However, in the recent papers [15,

16, 17], Ferrero and Saccon were able to find, by a clever change of variable, a direct

variational approach which recovers, for instance, the (known) existence of a solution u

when g(s) = |s|p−1s and p < n/(n− 2). Moreover, they also started the study of multiple

solutions by variational methods, when g is not assumed to be nondecreasing. On the

other hand, their approach seems to require an asymptotic growth estimate on g also

when g is nondecreasing and µ ∈ L1(Ω), in contrast with the results of [7].

The purpose of this thesis is to propose a different variational approach, more in the

line of [9], and then prove some existence and multiplicity results for the solutions of (4).

More precisely, we assume that a(x) is symmetric, that g is nondecreasing, that

µ ∈ Mb(Ω) and that there exists the solution u0 of (4). Then we look for solutions

(λ, u) ∈ R× L1(Ω) of

(6)

{
−div(a∇u) + g(u) = λ(u− u0) + µ in Ω ,

u = 0 on ∂Ω ,

without assuming any growth estimate on g. Of course, (λ, u0) is a solution of (6) for any

λ ∈ R, so that (6) admits the “trivial branch” of solutions {(λ, u0) : λ ∈ R}. Therefore

both local and global questions can be raised for (6).

As a result of global type, we will show that (6) admits at least two nontrivial

solutions provided that

lim
|s|→∞

G(s)

s2
= +∞

and that λ is large enough. If g is of class C1, then the condition on λ can be expressed

in a more precise way by requiring that

λ > inf

{∫
Ω

(a∇v) · ∇v dx+

∫
Ω

g′(u0)v2 dx : v ∈ W 1,2
0 (Ω) ,

∫
Ω

v2 dx = 1

}
.

This result has already appeared in [14].

As a result of local type, we will prove an adaptation to our setting of a celebrated

bifurcation theorem of Rabinowitz (see [25, Theorem 11.35]).





Chapter 1

Some auxiliary results

1 On the regularity of solutions defined by duality

From now on, Ω will denote a bounded open subset of Rn, with n ≥ 2, and

a ∈ L∞(Ω;Mn,n) a map such that there exists ν > 0 satisfying

(a(x)ξ) · ξ ≥ ν |ξ|2 for a.e. x ∈ Ω and every ξ ∈ Rn .

Then we denote by A,A∗ : W 1,2
0 (Ω) → W−1,2(Ω) the bijective maps defined as

Au = −div(a∇u), A∗u = −div(at∇u).

When 1 ≤ p ≤ ∞, ‖ ‖p will denote the usual norm in Lp(Ω) and Lpc(Ω) the subspace

of u’s in Lp(Ω) vanishing a.e. outside some compact subset of Ω. Finally, for every s ∈ R,

we set s± = max{±s, 0} and define Tk : R→ R by Tk(s) = min{max{s,−k}, k}.
The regularity results of De Giorgi [12], Nash [23] and Stampacchia (see [27, 28])

ensure that (A∗)−1ϕ is continuous and bounded on Ω for every ϕ ∈ W−1,q(Ω) with q > n

and

‖(A∗)−1ϕ‖∞ ≤ c(n, q,Ω)‖ϕ‖W−1,q .

Therefore, for every µ ∈ Mb(Ω) and 1 < p < n
n−1

, we can define a linear and continuous

function

U : W−1,p′(Ω)→ R

as

〈U,ϕ〉 =

∫
Ω

((A∗)−1ϕ) dµ .

Since W 1,p
0 (Ω) is reflexive, there exists one and only one u ∈ W 1,p

0 (Ω) such that

〈ϕ, u〉 =

∫
Ω

((A∗)−1ϕ) dµ for any ϕ ∈ W−1,p′(Ω) ,

1
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namely

〈A∗v, u〉 =

∫
Ω

v dµ for any v ∈ W 1,2
0 (Ω) with A∗v ∈ W−1,p′(Ω) .

In particular, we have u ∈ D′(Ω) and

〈u,A∗v〉 =

∫
Ω

v dµ for any v ∈ W 1,2
0 (Ω) with A∗v ∈ C∞c (Ω)

and this last formulation is enough to guarantee the uniqueness of u in D′(Ω). Therefore

u is independent of the choice of p ∈]1, n/(n− 1)[.

We conclude that, given µ ∈ Mb(Ω), there exists one and only one u ∈ D′(Ω) such

that

〈u,A∗v〉 =

∫
Ω

v dµ for any v ∈ W 1,2
0 (Ω) with A∗v ∈ C∞c (Ω) .

Moreover u ∈
⋂

1<p< n
n−1

W 1,p
0 (Ω) and

〈A∗v, u〉 =

∫
Ω

v dµ for any v ∈ W 1,2
0 (Ω) with A∗v ∈

⋃
n<q<∞

W−1,q(Ω) .

In particular, u can be also characterized by
u ∈ L1(Ω) ,∫

Ω

uA∗v dx =

∫
Ω

v dµ for every v ∈ W 1,2
0 (Ω) with A∗v ∈ L∞(Ω) .

Recall also that, according to [11, Theorem 10.1 and Formula (2.22)], we have

Tk(u) ∈ W 1,2
0 (Ω) for every k > 0,

(1.1.1) ν

∫
Ω

|∇Tk(u)|2 dx ≤ k|µ|(Ω) ∀k > 0

and there exists a cap2-quasi continuous function ũ : Ω → R such that ũ = u a.e. in Ω,

where cap2 denotes the capacity as defined in [11]. Moreover, a standard summability

result holds.

Theorem 1.1.2 Let g : Ω× R→ R be a Carathéodory function such that

(1.1.3) s g(x, s) ≥ 0 for a.e. x ∈ Ω and every s ∈ R .

Let u ∈ L1(Ω) and w ∈ Lp(Ω) with p > 1 be such that g(x, u) ∈ L1(Ω) and∫
Ω

uA∗v dx+

∫
Ω

g(x, u) v dx =

∫
Ω

vw dx for every v ∈ W 1,2
0 (Ω) with A∗v ∈ L∞(Ω) .

Then the following facts hold:
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(a) if n ≥ 3 and p < 2n/(n+ 2), we have u ∈ W 1,np/(n−p)
0 (Ω) ⊆ Lnp/(n−2p)(Ω) and

‖∇u‖ np
n−p
≤ c(n, p, ν)‖w‖p ;

(b) if n ≥ 3 and 2n/(n+ 2) ≤ p < n/2, we have u ∈ W 1,2
0 (Ω) ∩ Lnp/(n−2p)(Ω),

‖∇u‖2 ≤ c(n, p, ν)‖w‖ 2n
n+2

,

‖u‖ np
n−2p

≤ c(n, p, ν)‖w‖p

and ∫
Ω

(a∇u) · ∇v dx+

∫
Ω

g(x, u) v dx =

∫
Ω

vw dx

for every v ∈ W 1,2
0 (Ω) ∩ L∞(Ω) ;

(c) if n ≥ 2 and p > n/2, we have u ∈ W 1,2
0 (Ω) ∩ L∞(Ω),

‖∇u‖2 + ‖u‖∞ ≤ c(n, p, ν,Ω)‖w‖p

and ∫
Ω

(a∇u) · ∇v dx+

∫
Ω

g(x, u) v dx =

∫
Ω

vw dx

for every v ∈ W 1,2
0 (Ω) ∩ L∞(Ω) .

(d) if n ≥ 2 and |w| ≤ w0(1+ |u|) with w0 ∈ Lq(Ω), q > n/2, then u ∈ W 1,2
0 (Ω)∩L∞(Ω),

‖u‖∞ ≤ c(n, p, ν,Ω) ‖w0‖q (1 + ‖∇u‖2)

and ∫
Ω

(a∇u) · ∇v dx+

∫
Ω

g(x, u) v dx =

∫
Ω

vw dx

for every v ∈ W 1,2
0 (Ω) ∩ L∞(Ω) .

Proof. Let ϑ : R → R be a nondecreasing, locally Lipschitz function with ϑ(0) = 0.

According to [11, Definition 2.25 and Theorem 2.33], we have

ν

∫
Ω

ϑ′(Tk(u))|∇Tk(u)|2 dx ≤
∫

Ω

ϑ′(Tk(u))(a∇Tk(u)) · ∇Tk(u) dx =

∫
Ω

w ϑ(Tk(u)) dx .



4 CHAPTER 1. SOME AUXILIARY RESULTS

(a) Given r ∈]0, 1[ and ε > 0, let

ϑε(s) =

∫ s

0

1

(ε+ |t|)r
dt .

If we set p∗ = np/(n− p), then p∗ < 2 and, as in the proof of [24, Lemma 2.1], we have

∫
Ω

|∇Tk(u)|p∗ dx ≤
(∫

Ω

|∇Tk(u)|2

(ε+ |Tk(u)|)r
dx

) p∗
2
(∫

Ω

(ε+ |Tk(u)|)
rp∗
2−p∗ dx

) 2−p∗
2

≤
(

1

ν

∫
Ω

|w| |ϑε(Tk(u))| dx
) p∗

2
(∫

Ω

(ε+ |Tk(u)|)
rp∗
2−p∗ dx

) 2−p∗
2

.

Passing to the limit as ε→ 0 and applying Lebesgue’s theorem, it follows∫
Ω

|∇Tk(u)|p∗ dx ≤
(

1

ν(1− r)

∫
Ω

|w| |Tk(u)|1−r dx
) p∗

2
(∫

Ω

|Tk(u)|
rp∗
2−p∗ dx

) 2−p∗
2

.

Then the same argument of [24, Lemma 2.1] yields assertion (a).

The proof of assertions (b) and (c) is more standard and follows the same lines of

the regularity results of [21, 22, 27, 28].

(d) Considered u ∈
⋂

r< n
n−2

Lr(Ω), we deduce from (a) that there exists q0 > 1 with

w0u ∈ Lq0(Ω) and

‖w‖q0 ≤ ‖w0‖q c(Ω) ‖u‖r ,

so that w ∈ Lq0(Ω).

Then, from (a),(b), (c) and a standard bootstrap argument, the assertion follows.

2 Convex functionals

Throughout this section, we also assume that a(x) is symmetric for a.e. x ∈ Ω, so that

A∗ = A, and consider a Carathéodory function g : Ω× R→ R such that:

(g1) for a.e. x ∈ Ω, the function g(x, ·) is nondecreasing;

(g2) for a.e. x ∈ Ω, we have g(x, 0) = 0.
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We set G(x, s) :=
∫ s

0
g(x, t) dt and observe that 0 ≤ G(x, s) ≤ s g(x, s) for a.e. x ∈ Ω and

every s ∈ R. In particular, we can define a lower semicontinuous and convex functional

J : W 1,2
0 (Ω)→]−∞,+∞]

by

J(u) =
1

2

∫
Ω

(a∇u) · ∇u dx+

∫
Ω

G(x, u) dx .

Theorem 1.2.1 Let u ∈ W 1,2
0 (Ω) and w ∈ W−1,2(Ω) with J(u) < +∞ and w ∈ ∂J(u).

Then we have g(x, u)u ∈ L1(Ω) and the following facts hold:

(a) if w ∈ L1
loc(Ω), we have g(x, u) ∈ L1

loc(Ω);

(b) if w ∈ L1(Ω), we have g(x, u) ∈ L1(Ω) and ‖g(x, u)‖1 ≤ ‖w‖1.

Proof. First of all, it is standard that G(x, u) ∈ L1(Ω) and

g(x, u)(v − u) ∈ L1(Ω) for every v ∈ W 1,2
0 (Ω) with G(x, v) ∈ L1(Ω) ,∫

Ω

(a∇u) · (∇v −∇u) dx+

∫
Ω

g(x, u)(v − u) dx ≥ 〈w, v − u〉

for every v ∈ W 1,2
0 (Ω) with G(x, v) ∈ L1(Ω)

(see also [13, Corollary 2.2]). The choice v = 0 yields g(x, u)u ∈ L1(Ω). Moreover, for

every ϕ ∈ W 1,∞(Ω) with 0 ≤ ϕ ≤ 1 and every k > 0, we can also choose as test function

v = u− T1/k(u)ϕ ,

obtaining∫
Ω

T1/k(u)(a∇u) · ∇ϕdx+

∫
Ω

g(x, u)T1/k(u)ϕdx

≤
∫

Ω

T1/k(u)(a∇u) · ∇ϕdx+

∫
Ω

ϕT ′1/k(u)(a∇u) · ∇u dx+

∫
Ω

g(x, u)T1/k(u)ϕdx

≤ 〈w, T1/k(u)ϕ〉 ≤ 1

k

∫
Ω

|w|ϕdx ,

hence ∫
Ω

k T1/k(u)(a∇u) · ∇ϕdx+

∫
Ω

g(x, u) k T1/k(u)ϕdx ≤
∫

Ω

|w|ϕdx .
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Passing to the limit as k →∞, from the Lebesgue and the monotone convergence theorem,

we get∫
Ω

(a∇|u|) · ∇ϕdx+

∫
Ω

|g(x, u)|ϕdx ≤
∫

Ω

|w|ϕdx

for any ϕ ∈ W 1,∞(Ω) with 0 ≤ ϕ ≤ 1

and assertions (a) and (b) easily follow.

Now we are interested in ruling out the possibility that ∂J be multivalued. For this

purpose, we add the assumption:

(g3) for every compact subset K of Ω, every S > 0 and every ε > 0, there exists an open

subset ω of Ω with cap2(ω,Ω) < ε such that

sup
|s|≤S
|g(·, s)| ∈ L1(K \ ω) .

Proposition 1.2.2 Let u0 : Ω → R be a cap2-quasi continuous function and define

ĝ : Ω× R → R by ĝ(x, s) = g(x, u0(x) + s)− g(x, u0(x)). Then ĝ also is a Carathéodory

function satisfying (g1)− (g3).

Assume moreover that {s 7→ g(x, s)} is of class C1 for a.e. x ∈ Ω and that the

Carathéodory function Dsg satisfies (g3). If we define ǧ : Ω× R→ R by

ǧ(x, s) =

(
sup
|t|≤1

Dsg(x, tu0(x))

)
s ,

then ǧ also is a Carathéodory function satisfying (g1)− (g3).

Proof. Of course, ĝ is a Carathéodory function satisfying (g1) and (g2). In particular, for

every S > 0 the function

sup
|s|≤S
|ĝ(·, s)| = sup

|s|≤S
s∈Q

|ĝ(·, s)| a.e. in Ω

is measurable.

Given a compact subset K of Ω, S > 0 and ε > 0, let ω′ be an open subset of Ω

with cap2(ω′,Ω) < ε/2 such that the restriction of u0 to Ω \ ω′ is continuous. Let S ′ be

the maximum of |u0| on K \ω′ and let ω′′ be an open subset of Ω with cap2(ω′′,Ω) < ε/2

such that

sup
|s|≤S′+S

|g(·, s)| ∈ L1(K \ ω′′) .
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If we set ω = ω′ ∪ ω′′, then cap2(ω,Ω) < ε and, for every x ∈ K \ ω, we have

sup
|s|≤S
|ĝ(x, s)| ≤ sup

|s|≤S′+S
|g(x, s)|+ sup

|s|≤S′
|g(x, s)| ≤ 2 sup

|s|≤S′+S
|g(x, s)| ,

whence property (g3).

The assertions concerning ǧ can be proved in a similar way.

Theorem 1.2.3 For every u ∈ W 1,2
loc (Ω) and every v ∈ W 1,2

0 (Ω), there exists a sequence

(vk) in W 1,2
0 (Ω) ∩ L∞c (Ω) converging to v in W 1,2

0 (Ω) with

−v− ≤ vk ≤ v+ a.e. in Ω , u ∈ L∞ ({x ∈ Ω : vk(x) 6= 0}) ,

G(x, vk) ∈ L1(Ω) , g(x, u)vk ∈ L1(Ω) .

In particular, {
v ∈ W 1,2

0 (Ω) ∩ L∞c (Ω) : g(x, u)v ∈ L1(Ω)
}

is a dense linear subspace of W 1,2
0 (Ω).

Proof. Given u ∈ W 1,2
loc (Ω), v ∈ W 1,2

0 (Ω) and ε > 0, there exists a sequence (ẑk)

in C∞c (Ω) converging to v in W 1,2
0 (Ω). Then zk = min{max{ẑk,−v−}, v+} belongs to

W 1,2
0 (Ω) ∩ L∞c (Ω), satisfies −v− ≤ zk ≤ v+ and is still convergent to v in W 1,2

0 (Ω). Let

k ∈ N be such that ‖∇zk −∇v‖2 < ε.

Let now ϑ : R → [0, 1] be a C∞-function with ϑ = 1 on [−1, 1] and ϑ = 0 outside

] − 2, 2[. Then zk,h = ϑ(u/h)zk belongs to W 1,2
0 (Ω) ∩ L∞c (Ω), satisfies −v− ≤ zk,h ≤ v+,

u ∈ L∞ ({zk,h 6= 0}) and is convergent to zk in W 1,2
0 (Ω). Let h ∈ N be such that

‖∇zk,h −∇zk‖2 < ε.

Finally, let K = supt zk,h, S = 2h + ‖zk,h‖∞ and, given j ∈ N, let ωj be an open

subset of Ω with cap2(ωj,Ω) < 1/j such that

sup
|s|≤S
|g(·, s)| ∈ L1(K \ ωj) .

Let ψj ∈ W 1,2
0 (Ω) with ‖∇ψj‖2 < 1/j, ψj = 1 a.e. on ωj and ψj ≤ 1 a.e. on Ω. Then

zk,h,j = min{max{zk,h,−S(1 − ψj)}, S(1 − ψj)} belongs to W 1,2
0 (Ω) ∩ L∞c (Ω), satisfies

−v− ≤ zk,h,j ≤ v+, u ∈ L∞ ({zk,h,j 6= 0}) and is convergent to zk,h in W 1,2
0 (Ω). Let j ∈ N

be such that ‖∇zk,h,j −∇zk,h‖2 < ε, so that ‖∇zk,h,j −∇v‖2 < 3ε. Since

|G(x, zk,h,j)| ≤

(
‖zk,h‖∞ sup

|s|≤‖zk,h‖∞
|g(x, s)|

)
χK\ωj(x) ,
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|g(x, u) zk,h,j| ≤

(
‖zk,h‖∞ sup

|s|≤2h

|g(x, s)|

)
χK\ωj(x) ,

we also have G(x, zk,h,j) ∈ L1(Ω), g(x, u) zk,h,j ∈ L1(Ω) and the assertion follows.

Now we can show the main consequences of assumption (g3). Let us point out that

the next assertion (b) is an adaptation to our setting of the result of [5].

Theorem 1.2.4 Let u ∈ W 1,2
0 (Ω) and w ∈ W−1,2(Ω). Then the following facts hold:

(a) we have J(u) < +∞ and w ∈ ∂J(u) if and only if∫
Ω

((a∇u) · ∇v + g(x, u) v) dx = 〈w, v〉

for every v ∈ W 1,2
0 (Ω) with g(x, u)v ∈ L1(Ω) ;

(b) if J(u) < +∞, w ∈ ∂J(u), v ∈ W 1,2
0 (Ω) and (g(x, u) v)− ∈ L1(Ω), then

g(x, u) v ∈ L1(Ω) and∫
Ω

((a∇u) · ∇v + g(x, u) v) dx = 〈w, v〉 ;

(c) if J(u) < +∞, the set ∂J(u) contains at most one element.

Proof. Let J(u) < +∞ and w ∈ ∂J(u). As before, for every v ∈ W 1,2
0 (Ω) with

G(x, v) ∈ L1(Ω), we have g(x, u)(v − u) ∈ L1(Ω) and∫
Ω

(a∇u) · (∇v −∇u) dx+

∫
Ω

g(x, u)(v − u) dx ≥ 〈w, v − u〉 ,

namely, as g(x, u)u ∈ L1(Ω) by Theorem 1.2.1,∫
Ω

(a∇u) · ∇v dx+

∫
Ω

g(x, u) v dx− 〈w, v〉 ≥
∫

Ω

(a∇u) · ∇u dx+

∫
Ω

g(x, u)u dx− 〈w, u〉 .

Now let v ∈ W 1,2
0 (Ω) with g(x, u) v ∈ L1(Ω) and let (vk) be a sequence as in Theorem 1.2.3.

Since

(1.2.5)

∫
Ω

(a∇u) · ∇vk dx+

∫
Ω

g(x, u) vk dx− 〈w, vk〉

≥
∫

Ω

(a∇u) · ∇u dx+

∫
Ω

g(x, u)u dx− 〈w, u〉

and |g(x, u) vk| ≤ |g(x, u) v|, we can pass to the limit as k →∞ in (1.2.5), obtaining∫
Ω

(a∇u) · ∇v dx+

∫
Ω

g(x, u) v dx− 〈w, v〉 ≥
∫

Ω

(a∇u) · ∇u dx+

∫
Ω

g(x, u)u dx− 〈w, u〉 .
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Since
{
v ∈ W 1,2

0 (Ω) : g(x, u)v ∈ L1(Ω)
}

is a dense linear subspace of W 1,2
0 (Ω), it follows∫

Ω

(a∇u) · ∇v dx+

∫
Ω

g(x, u) v dx = 〈w, v〉 for every v ∈ W 1,2
0 (Ω) with g(x, u) v ∈ L1(Ω)

and ∂J(u) = {w}. In particular, the proof of assertion (c) is complete.

Consider now v ∈ W 1,2
0 (Ω) with (g(x, u) v)− ∈ L1(Ω) and let (vk) be a sequence as in

Theorem 1.2.3. Since ∫
Ω

g(x, u) vk dx = 〈w, vk〉 −
∫

Ω

(a∇u) · ∇vk dx

and g(x, u) vk ≥ − (g(x, u) v)−, from Fatou’s lemma we infer that g(x, u) v ∈ L1(Ω) and

assertion (b) also follows.

Finally, let us complete the proof of (a). Therefore, assume that w ∈ W−1,2(Ω)

satisfies ∫
Ω

((a∇u) · ∇v + g(x, u) v) dx = 〈w, v〉

for every v ∈ W 1,2
0 (Ω) with g(x, u)v ∈ L1(Ω) .

As before, we automatically have∫
Ω

((a∇u) · ∇v + g(x, u) v) dx = 〈w, v〉

for every v ∈ W 1,2
0 (Ω) with (g(x, u)v)− ∈ L1(Ω) .

In particular, from g(x, u)u ≥ 0 we infer that g(x, u)u ∈ L1(Ω), hence that

G(x, u) ∈ L1(Ω), namely J(u) < +∞. Moreover, for every v ∈ W 1,2
0 (Ω) with

G(x, v) ∈ L1(Ω), from

g(x, u)(u− v) ≥ G(x, u)−G(x, v)

it follows ∫
Ω

((a∇u) · (∇u−∇v) + g(x, u) (u− v)) dx = 〈w, u− v〉 ,

hence, by convexity,

J(v) ≥ J(u) +

∫
Ω

((a∇u) · (∇v −∇u) + g(x, u) (v − u)) dx = J(u) + 〈w, v − u〉 .

If v ∈ W 1,2
0 (Ω) and G(x, v) 6∈ L1(Ω), it is obvious that

J(v) ≥ J(u) + 〈w, v − u〉 .

Therefore w ∈ ∂J(u) and the proof of assertion (a) is complete.
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Corollary 1.2.6 Let u ∈ W 1,2
0 (Ω) and w ∈ L1(Ω)∩W−1,2(Ω). Then we have J(u) < +∞

and w ∈ ∂J(u) if and only if g(x, u) ∈ L1(Ω) and∫
Ω

((a∇u) · ∇v + g(x, u) v) dx = 〈w, v〉 for every v ∈ W 1,2
0 (Ω) ∩ L∞(Ω) .

Proof. If J(u) < +∞ and w ∈ ∂J(u), we infer from Theorems 1.2.1 and 1.2.4 that

g(x, u) ∈ L1(Ω) and∫
Ω

((a∇u) · ∇v + g(x, u) v) dx = 〈w, v〉 for every v ∈ W 1,2
0 (Ω) ∩ L∞(Ω) .

To prove the converse, consider v ∈ W 1,2
0 (Ω) with g(x, u) v ∈ L1(Ω). Let (vk) be a

sequence as in Theorem 1.2.3. Since∫
Ω

((a∇u) · ∇vk + g(x, u) vk) dx = 〈w, vk〉

and |g(x, u) vk| ≤ |g(x, u) v|, we can pass to the limit, obtaining∫
Ω

((a∇u) · ∇v + g(x, u) v) dx = 〈w, v〉

for every v ∈ W 1,2
0 (Ω) with g(x, u)v ∈ L1(Ω) .

From Theorem 1.2.4 we conclude that J(u) < +∞ and w ∈ ∂J(u).

3 Variational characterization

Throughout this section, we keep on Ω, a and g the same assumptions of Section 2.

Moreover, we consider µ ∈Mb(Ω) and assume that

(1.3.1)


there exists u0 ∈ L1(Ω) such that g(x, u0) ∈ L1(Ω) and∫

Ω

u0Av dx+

∫
Ω

g(x, u0) v dx =

∫
Ω

v dµ

for every v ∈ W 1,2
0 (Ω) with Av ∈ L∞(Ω) .

We set G(x, s) =
∫ s

0
g(x, t) dt and define ĝ, Ĝ : Ω× R→ R by

ĝ(x, s) = g(x, u0(x) + s)− g(x, u0(x)) ,

Ĝ(x, s) =

∫ s

0

ĝ(x, t) dt = G(x, u0(x) + s)−G(x, u0(x))− g(x, u0(x)) s .
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According to Proposition 1.2.2, also ĝ is a Carathéodory function satisfying (g1) − (g3).

Finally, as in Section 2 we define a lower semicontinuous and convex functional

Ĵ : W 1,2
0 (Ω)→]−∞,+∞]

by

Ĵ(u) =
1

2

∫
Ω

(a∇u) · ∇u dx+

∫
Ω

Ĝ(x, u) dx .

The main result of the section is the next characterization.

Theorem 1.3.2 For every λ ∈ R and u ∈ L1(Ω), the following facts are equivalent:

(a) we have
g(x, u) ∈ L1(Ω) ,∫

Ω

uAv dx+

∫
Ω

g(x, u) v dx = λ

∫
Ω

(u− u0)v dx+

∫
Ω

v dµ

for every v ∈ W 1,2
0 (Ω) with Av ∈ L∞(Ω) ;

(b) if we set z = u− u0, we have
z ∈ W 1,2

0 (Ω) ,

Ĵ(v) ≥ Ĵ(z) + λ

∫
Ω

z(v − z) dx for every v ∈ W 1,2
0 (Ω) .

Proof. If (a) holds, then z ∈ L1(Ω), ĝ(x, z) = g(x, u)− g(x, u0) ∈ L1(Ω) and∫
Ω

zAv dx+

∫
Ω

ĝ(x, z) v dx = λ

∫
Ω

zv dx for every v ∈ W 1,2
0 (Ω) with Av ∈ L∞(Ω) .

Then z ∈ Lr(Ω) for any r < n/(n − 2). By Theorem 1.1.2 and a standard bootstrap

argument, it follows that z ∈ W 1,2
0 (Ω) ∩ L∞(Ω) and∫

Ω

(a∇z) · ∇v dx+

∫
Ω

ĝ(x, z) v dx = λ

∫
Ω

zv dx for every v ∈ W 1,2
0 (Ω) ∩ L∞(Ω) .

By Corollary 1.2.6 we deduce that Ĵ(z) < +∞ and λz ∈ ∂Ĵ(z), namely

Ĵ(v) ≥ Ĵ(z) + λ

∫
Ω

z(v − z) dx for every v ∈ W 1,2
0 (Ω) .

Conversely, assume that z ∈ W 1,2
0 (Ω) and

Ĵ(v) ≥ Ĵ(z) + λ

∫
Ω

z(v − z) dx for every v ∈ W 1,2
0 (Ω) .
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Then Ĵ(z) < +∞ and by Corollary 1.2.6 we deduce that ĝ(x, z) ∈ L1(Ω), namely

g(x, u) ∈ L1(Ω), and∫
Ω

(a∇z) · ∇v dx+

∫
Ω

ĝ(x, z) v dx = λ

∫
Ω

zv dx for every v ∈ W 1,2
0 (Ω) ∩ L∞(Ω) .

In particular, for every v ∈ W 1,2
0 (Ω) with Av ∈ L∞(Ω), we have∫

Ω

zAv dx+

∫
Ω

ĝ(x, z) v dx = λ

∫
Ω

zv dx ,

namely ∫
Ω

uAv dx+

∫
Ω

g(x, u) v dx = λ

∫
Ω

(u− u0)v dx+

∫
Ω

v dµ

and assertion (a) follows.

Corollary 1.3.3 The function u0 introduced in assumption (1.3.1) is unique.

Proof. Let û0 be another function as in (1.3.1). If we apply Theorem 1.3.2 with λ = 0,

we find that 0 and û0 − u0 are two minima of the strictly convex functional Ĵ , whence

û0 = u0.

4 Parametric minimization

Let X be a Banach space and I : X → [−∞,+∞] a convex function. Assume also

that X = X− ⊕ X+, with X− finite dimensional and X+ closed in X, and define

ϕ : X− → [−∞,+∞] as

ϕ(v) = inf {I(v + w) : w ∈ X+} .

Finally, denote by P : X → X− the projection associated to the direct decomposition and

by P ′ : X−
′ → X ′ the dual map defined as

〈P ′α, u〉 = 〈α, Pu〉 ∀α ∈ X−′ , ∀u ∈ X .

Theorem 1.4.1 The following facts hold:
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(a) the function ϕ is convex;

(b) if v ∈ X− and w ∈ X+ satisfy I(v + w) = ϕ(v) ∈ R, then

∂I(v + w) ∩ P ′(X−′) = {P ′α : α ∈ ∂ϕ(v)} ;

(c) if U is an open subset of X− and ϕ
∣∣
U

has values in R, then ϕ
∣∣
U

is locally Lipschitz

and ∂ϕ(v) 6= ∅ for any v ∈ U ; if one also knows that ∂ϕ(v) contains exactly one

element for any v ∈ U , then ϕ
∣∣
U

is of class C1 and ∂ϕ(v) = {ϕ′(v)} for any v ∈ U .

Proof. Let (v0, s0), (v1, s1) ∈ X−×R with ϕ(vj) ≤ sj and let t ∈]0, 1[. Let also ε > 0 and

let w1, w2 ∈ X+ be such that I(vj+wj) < sj+ε. Then (v0 +w0, s0 +ε) and (v1 +w1, s1 +ε)

belong to the epigraph of I, which is convex. It follows

ϕ((1− t)v0 + tv1) ≤ I((1− t)(v0 + w0) + t(v1 + w1)) ≤ (1− t)s0 + ts1 + ε ,

hence

ϕ((1− t)v0 + tv1) ≤ (1− t)s0 + ts1

by the arbitrariness of ε. Therefore the epigraph of ϕ is convex, namely ϕ is convex.

If α ∈ ∂ϕ(v), for every u ∈ X we have

I(u) ≥ ϕ(Pu) ≥ ϕ(v) + 〈α, Pu− v〉

= I(v + w) + 〈α, P (u− v − w)〉

= I(v + w) + 〈P ′α, u− v − w〉 ,

whence P ′α ∈ ∂I(v + w).

On the other hand, if P ′α ∈ ∂I(v + w), for every u− ∈ X− and u+ ∈ X+ we have

I(u− + u+) ≥ I(v + w) + 〈P ′α, u− + u+ − v − w〉 = ϕ(v) + 〈α, u− − v〉 ,

whence

ϕ(u−) ≥ ϕ(v) + 〈α, u− − v〉 .

It follows α ∈ ∂ϕ(v).

Finally, if U is an open subset of X− and ϕ
∣∣
U

has values in R, it follows from [26,

Corollary 2.36 and Example 9.14] that ϕ
∣∣
U

is locally Lipschitz with ∂ϕ(v) 6= ∅ for any

v ∈ U . In particular, ϕ is strictly continuous at any v ∈ U . If ∂ϕ(v) contains exactly one

element for any v ∈ U , from [26, Theorems 9.18 and Corollary 9.19] it follows that ϕ
∣∣
U

is

of class C1 and ∂ϕ(v) = {ϕ′(v)} for any v ∈ U .
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5 Abstarct bifurcation in finite dimension

First of all, let us recall [8, Theorem 5.1], which is in turn related to a celebrated bifur-

cation result of Rabinowitz [25, Theorem 11.35] (see also [20, Theorem 2]).

Theorem 1.5.1 Let X be a finite dimensional normed space, let δ > 0, λ̂ ∈ R and, for

every λ ∈ [λ̂− δ, λ̂+ δ], let ϕλ : B(0, δ)→ R be a function of class C1. Assume that:

(a) the maps {(λ, u) 7→ ϕλ(u)} and {(λ, u) 7→ ϕ′λ(u)} are continuous on

[λ̂− δ, λ̂+ δ]×B(0, δ);

(b) ϕλ has an isolated local minimum (maximum) at zero for every λ ∈]λ̂, λ̂+ δ] and an

isolated local maximum (minimum) at zero for every λ ∈ [λ̂− δ, λ̂[.

Then one at least of the following assertions holds:

(i) u = 0 is not an isolated critical point of ϕλ̂;

(ii) for every λ 6= λ̂ in a neighborhood of λ̂ there is a nontrivial critical point of ϕλ

converging to zero as λ→ λ̂;

(iii) there is a one-sided (right or left) neighborhood of λ̂ such that for every λ 6= λ̂ in

the neighborhood there are two distinct nontrivial critical points of ϕλ converging to

zero as λ→ λ̂.

For our purposes, the next adaptation is more suited.

Theorem 1.5.2 Let X be a finite dimensional normed space, let δ > 0, λ̂ ∈ R and, for

every λ ∈ [λ̂− δ, λ̂+ δ], let ϕλ : B(0, δ)→ R be a function of class C2. Assume that:

(a) ϕλ(0) = 0, ϕ′λ(0) = 0 for every λ ∈ [λ̂− δ, λ̂+ δ], and the map {(λ, u) 7→ ϕ′′λ(u)} is

continuous on [λ̂− δ, λ̂+ δ]×B(0, δ);

(b) Ker ϕ′′
λ̂
(0) 6= {0} and there exist two linear maps L,K : X → X ′ such that

〈Lu, v〉 = 〈Lv, u〉 , 〈Ku, v〉 = 〈Kv, u〉 , ∀u, v ∈ X ,

〈Ku, u〉 > 0 ∀u 6= 0 ,

ϕ′′λ(0) = L− λK ∀λ ∈ [λ̂− δ, λ̂+ δ] .

Then one at least of the following assertions holds:
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(i) u = 0 is not an isolated critical point of ϕλ̂;

(ii) for every λ 6= λ̂ in a neighborhood of λ̂ there is a nontrivial critical point of ϕλ

converging to zero as λ→ λ̂;

(iii) there is a one-sided (right or left) neighborhood of λ̂ such that for every λ 6= λ̂ in

the neighborhood there are two distinct nontrivial critical points of ϕλ converging to

zero as λ→ λ̂.

Proof. Consider in X the scalar product

(u|v) = 〈Ku, v〉 ,

which induces a compatible norm in X, as X is finite dimensional.

Let

X0 = Kerϕ′′
λ̂
(0),

X1 = {w ∈ X : 〈Kv,w〉 = 0 ∀v ∈ X0} ,

so that

X = X0 ⊕X1.

On the other hand, if v ∈ X0 and w ∈ X1, we have

〈Lv,w〉 = λ̂ 〈Kv,w〉 = 0.

Therefore

〈ϕ′′λ(0)v, w〉 = 0 ∀λ ∈ [λ̂− δ, λ̂+ δ], ∀v ∈ X0, ∀w ∈ X1.

By the implicit function theorem, we can define a C1 map ψλ such that ψλ(0) = 0 and

〈ϕ′λ(v + ψλ(v)), w〉 = 0 ∀w ∈ X1.

The map ψλ(v) is defined for v in a neighborhood of zero in X0 and for λ in a neighbor-

hood of λ̂ (possibly smaller than [λ̂− δ, λ̂+ δ]). Moreover, ϕ′′λ(0) is injective on X1.

Proceeding by differentation we find

〈ϕ′′λ(0)(v + ψ′λ(0)v), w〉 = 0 ∀v ∈ X0, ∀w ∈ X1,
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hence

〈ϕ′′λ(0)ψ′λ(0)v, w〉 = 0 ∀v ∈ X0, ∀w ∈ X1.

From the previous statements, we have

〈ϕ′′λ(0)ψ′λ(0)v, u〉 = 0 ∀v ∈ X0, ∀u ∈ X,

then

ϕ′′λ(0)ψ′λ(0)v = 0 in X ′.

It follows, from the injectivity of ϕ′′λ(0), that

ψ′λ(0)v = 0 ∀v ∈ X0,

namely

(1.5.3) ψ′λ(0) = 0.

Let us introduce the function ϕ̃ defined as

ϕ̃λ(v) = ϕλ(v + ψλ(v)).

Then ϕ̃λ is of class C1 with

〈ϕ̃′λ(z), v〉 = 〈ϕ′λ(z + ψλ(z)), v〉 .

Then ϕ̃λ is of class C2 with

〈ϕ̃′′λ(z)v, v〉 = 〈ϕ′′λ(z + ψλ(z))(v + ψ′λ(z)v), v〉 .

Then it is easily seen that the function ϕ̃λ satisfies the assumptions of theorem (1.5.1).

In particular, we have

〈ϕ̃′′λ(0)v, v〉 = 〈ϕ′′λ(0)v, v〉 = 〈Lv, v〉 − λL 〈Kv, v〉 = (λ̂− λ) 〈Kv, v〉 .
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It follows that

(a) for λ < λ̂, 0 is an isolated local minimum,

(b) for λ > λ̂, 0 is an isolated local maximum.

From the Theorem (1.5.1), the assertion follows.



Chapter 2

The main results

1 Existence of nontrivial solutions

Throughout this section, we keep on Ω, a and g the same assumptions of Chapter 1,

Section 2. More explicitly, Ω is a bounded open subset of Rn, with n ≥ 2, and

a ∈ L∞(Ω;Mn,n) satisfies

a(x) is symmetric for a.e. x ∈ Ω ,

(a(x)ξ) · ξ ≥ ν |ξ|2 for a.e. x ∈ Ω and every ξ ∈ Rn

for some ν > 0.

Moreover, g : Ω× R→ R is a Carathéodory function satisfying:

(g1) for a.e. x ∈ Ω, the function g(x, ·) is nondecreasing;

(g2) for a.e. x ∈ Ω, we have g(x, 0) = 0;

(g3) for every compact subset K of Ω, every S > 0 and every ε > 0, there exists an open

subset ω of Ω with cap2(ω,Ω) < ε such that

sup
|s|≤S
|g(·, s)| ∈ L1(K \ ω) .

Finally, we consider µ ∈Mb(Ω) and assume that
there exists u0 ∈ L1(Ω) such that g(x, u0) ∈ L1(Ω) and∫

Ω

u0Av dx+

∫
Ω

g(x, u0) v dx =

∫
Ω

v dµ

for every v ∈ W 1,2
0 (Ω) with Av ∈ L∞(Ω) .

18
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We consider the problem

(2.1.1)

{
−div(a∇u) + g(x, u) = λ(u− u0) + µ in Ω ,

u = 0 on ∂Ω ,

namely
u ∈ L1(Ω) , g(x, u) ∈ L1(Ω) ,∫

Ω

uAv dx+

∫
Ω

g(x, u) v dx = λ

∫
Ω

(u− u0)v dx+

∫
Ω

v dµ

for every v ∈ W 1,2
0 (Ω) with Av ∈ L∞(Ω) ,

which admits u0 as solution for any λ ∈ R, and look for other solutions u.

As before, we set G(x, s) =
∫ s

0
g(x, t) dt and, throughout this section, suppose that

(g4) we have

lim
|s|→+∞

G(x, s)

s2
= +∞ for a.e. x ∈ Ω.

The first result we aim to prove is the next

Theorem 2.1.2 There exists λ > 0 such that, for every λ > λ, problem (2.1.1) admits

at least two other different solutions u1 and u2 with u1 ≤ u0 ≤ u2 a.e. in Ω.

Proof. If we define ĝ, Ĝ : Ω × R → R and Ĵ : W 1,2
0 (Ω) →] −∞,+∞] as in Chapter 1,

Section 3, we already know that ĝ satisfies (g1) − (g3). It is also clear that Ĝ satisfies

(g4). Define now ĝ+, Ĝ+ : Ω × R → R by ĝ+(x, s) = ĝ(x, s+), Ĝ+(x, s) =
∫ s

0
ĝ+(x, t) dt

and consider the functionals Ĵ+, I : W 1,2
0 (Ω)→]−∞,+∞] defined as

Ĵ+(u) =
1

2

∫
Ω

(a∇u) · ∇u dx+

∫
Ω

Ĝ+(x, u) dx ,

I(u) = Ĵ+(u)− λ

2

∫
Ω

(u+)2 dx .

It is clear that also ĝ+ satisfies (g1)− (g3), so that Ĵ+ is convex and lower semicontinuous,

and that I is sequentially lower semicontinuous with respect to the weak topology of

W 1,2
0 (Ω).

Let us show that I is also coercive. Assume, for a contradiction, that (vk) is a sequence

in W 1,2
0 (Ω) with ‖∇vk‖2 = 1 and (%k) a sequence with %k → +∞ such that I(%kvk) is

bounded from above. Up to a subsequence, (vk) is convergent weakly in W 1,2
0 (Ω) and a.e.

on Ω to some v. It follows that

lim inf
k

∫
Ω
Ĝ+(x, %kvk) dx

%2
k

< +∞ ,
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hence, as Ĝ+(x, s) ≥ 0, that

lim inf
k

Ĝ+(x, %kvk)

%2
k

< +∞ a.e. in Ω .

From (g4) it follows that v ≤ 0 a.e. in Ω, whence

lim inf
k

(
1

2

∫
Ω

(a∇vk) · ∇vk dx
)
≤ lim inf

k

I(%kvk)

%2
k

≤ 0 ,

in contradiction with ‖∇vk‖2 = 1.

Since I(0) = 0 < +∞, the functional I admits a minimum point u ∈ W 1,2
0 (Ω), which

satisfies λu+ ∈ ∂Ĵ+(u) (see e.g. [29]), namely

Ĵ+(v) ≥ Ĵ+(u) + λ

∫
Ω

u+(v − u) dx ∀v ∈ W 1,2
0 (Ω) .

The choice v = u+ yields
1

2

∫
Ω

(a∇u−) · ∇u− dx ≤ 0 ,

whence u ≥ 0 a.e. in Ω. Therefore, we also have λu ∈ ∂Ĵ(u) and from Theorem 1.3.2 we

infer that u0 + u is a solution of (2.1.1) with u0 ≤ u0 + u a.e. in Ω.

Now let us show that I(u) < 0, provided that λ is large enough, so that u0 + u is

different from u0. By Theorem 1.2.3 there exists v ∈ W 1,2
0 (Ω) \ {0} with v ≥ 0 a.e. in Ω

and Ĝ+(x, v) ∈ L1(Ω). Then it is clear that

I(u) ≤ I(v) =
1

2

∫
Ω

(a∇v) · ∇v dx+

∫
Ω

Ĝ+(x, v) dx− λ

2

∫
Ω

(v+)2 dx < 0 ,

provided that λ is large enough.

If we apply we same argument to ĝ−(x, s) = ĝ(x,−s−), we find another solution u1

different from u0 with u1 ≤ u0 a.e. in Ω.

Under further assumptions on g, an estimate of λ can be provided.

Theorem 2.1.3 Assume also that {s 7→ g(x, s)} is of class C1 for a.e. x ∈ Ω and that

the Carathéodory function Dsg satisfies (g3). Then

λ1 := inf

{∫
Ω

(a∇v) · ∇v dx+

∫
Ω

Dsg(x, u0)v2 dx : v ∈ W 1,2
0 (Ω) ,

∫
Ω

v2 dx = 1

}
< +∞

and, for every λ > λ1, problem (2.1.1) admits at least two other different solutions u1 and

u2 with u1 ≤ u0 ≤ u2 a.e. in Ω.
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Proof. By Proposition 1.2.2 and Theorem 1.2.3, there exists v ∈ W 1,2
0 (Ω) \ {0} such that

Dsg(x, u0) v2 ∈ L1(Ω), whence λ1 < +∞. Then it is standard that the infimum which

defines λ1 is achieved. Let ϕ ∈ W 1,2
0 (Ω) \ {0} be such that∫

Ω

(a∇ϕ) · ∇ϕdx+

∫
Ω

Dsg(x, u0)ϕ2 dx = λ1

∫
Ω

ϕ2 dx .

By substituting ϕ with |ϕ|, we may assume that ϕ ≥ 0 a.e. in Ω and, by choosing a

suitable representative, that ϕ is cap2-quasi continuous.

Now let λ > λ1 and let ĝ+, Ĝ+, Ĵ+ and I be as in the previous proof. We only have

to show that there exists v ∈ W 1,2
0 (Ω) with I(v) < 0.

Again by Proposition 1.2.2 and Theorem 1.2.3, there exists a sequence (ϕk) in

W 1,2
0 (Ω) ∩ L∞c (Ω) converging to ϕ in W 1,2

0 (Ω) with 0 ≤ ϕk ≤ ϕ and(
sup
|t|≤1

Dsg(x, t(|u0|+ ϕ))

)
ϕ2
k ∈ L1(Ω) .

Since 0 ≤ Dsg(x, u0)ϕ2
k ≤ Dsg(x, u0)ϕ2, by Lebesgue theorem there exists k ∈ N such

that ∫
Ω

(a∇ϕk) · ∇ϕk dx+

∫
Ω

Dsg(x, u0)ϕ2
k dx < λ

∫
Ω

ϕ2
k dx .

Since, for every t ∈]0, 1[, we have

0 ≤ Ĝ+(x, tϕk)

t2
≤ 1

2

(
sup

0<t<1
Dsg(x, u0 + tϕk)

)
ϕ2
k ≤

1

2

(
sup
|t|≤1

Dsg(x, t(|u0|+ ϕ))

)
ϕ2
k ,

again by Lebesgue theorem we infer that

lim
t→0+

∫
Ω
Ĝ+(x, tϕk) dx

t2
=

1

2

∫
Ω

Dsg(x, u0)ϕ2
k dx ,

hence that

lim
t→0+

I(tϕk)

t2
=

1

2

∫
Ω

(a∇ϕk) · ∇ϕk dx+
1

2

∫
Ω

Dsg(x, u0)ϕ2
k dx−

λ

2

∫
Ω

ϕ2
k dx < 0 .

For t > 0 small enough, we have I(tϕk) < 0, whence the existence of u2 ≥ u0.

Arguing on ĝ−(x, s) = ĝ(x,−s−), one finds in a similar way u1 ≤ u0.
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2 Bifurcation from trivial solutions

To avoid some technicalities, we will consider here a less general situation. More precisely,

let Ω be a bounded open subset of Rn, with n ≥ 2, let g : R → R be a nondecreasing

function of class C1 with g(0) = 0 and let µ ∈Mb(Ω). Assume that
there exists u0 ∈ L1(Ω) such that g(u0) ∈ L1(Ω) and

−
∫

Ω

u0∆v dx+

∫
Ω

g(u0) v dx =

∫
Ω

v dµ

for every v ∈ W 1,2
0 (Ω) with ∆v ∈ L∞(Ω) ,

so that (λ, u0) is a solution of the problem

(2.2.1)


u ∈ L1(Ω) , g(u) ∈ L1(Ω) ,

−
∫

Ω

u∆v dx+

∫
Ω

g(u) v dx = λ

∫
Ω

(u− u0)v dx+

∫
Ω

v dµ

for every v ∈ W 1,2
0 (Ω) with ∆v ∈ L∞(Ω) ,

for any λ ∈ R.

As before, we set G(s) =
∫ s

0
g(t) dt and define ĝ, Ĝ : Ω× R→ R by

ĝ(x, s) = g(u0(x) + s)− g(u0(x)) ,

Ĝ(x, s) =

∫ s

0

ĝ(x, t) dt = G(u0(x) + s)−G(u0(x))− g(u0(x)) s ,

and

Ĵ : W 1,2
0 (Ω)→]−∞,+∞]

by

Ĵ(u) =
1

2

∫
Ω

|∇u|2 dx+

∫
Ω

Ĝ(x, u) dx .

Definition 2.2.2 A real number λ̂ is said to be of bifurcation for (2.2.1) if there exists a

sequence (λh, wh) of solutions of (2.2.1) with wh 6= u0 and (λh, wh)→ (λ̂, u0) in R×L1(Ω).

Theorem 2.2.3 Let λ̂ be a bifurcation value of (2.2.1). Then there exists

u ∈ W 1,2
0 (Ω) \ {0} such that

√
g′(u0)u ∈ L2(Ω) and∫

Ω

(∇u · ∇v + g′(u0)uv) dx = λ̂

∫
Ω

uv dx

for every v ∈ W 1,2
0 (Ω) with

√
g′(u0) v ∈ L2(Ω) .
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Proof. Let uh = wh − u0, so that by Theorems 1.3.2 and 1.2.4 uh ∈ W 1,2
0 (Ω) satisfies∫

Ω

∇uh · ∇v dx+

∫
Ω

ĝ(x, uh)v dx = λh

∫
Ω

uhv dx

for every v ∈ W 1,2
0 (Ω) with ĝ(x, uh)v ∈ L1(Ω) .

By theorem (1.2.1) we have ĝ(x, uh)uh ∈ L1(Ω) and, as uh → 0 in L1(Ω), also ĝ(x, uh)→ 0

in L1(Ω), namely g(wh)→ g(u0) in L1(Ω).

From the definition of generalized solution, it follows that (wh) is bounded in any Lr(Ω)

with r < n
n−2

, so that also (uh) is bounded in any Lr(Ω) with r < n
n−2

. From theorem

(1.1.2), we infer, by a bootstrap argument, that ∇uh → 0 in L2(Ω).

Coming back to the equation∫
Ω

∇uh · ∇v dx+

∫
Ω

ĝ(x, uh)v dx = λh

∫
Ω

uhv dx,

we set %h = ‖∇uh‖2 and define zh =
uh
%h

.

Dividing both the sides of the previous equation by %h, we find∫
Ω

∇zh · ∇v dx+

∫
Ω

ĝ(x, %hzh)

%h
v dx = λh

∫
Ω

zhv dx,

for every v ∈ W 1,2
0 (Ω) with ĝ(x, %hzh)v ∈ L1(Ω).

Since zh is bounded in W 1,2
0 (Ω), up to a subsequence we have zh ⇀ z in W 1,2

0 (Ω) and∫
Ω

|∇zh|2 dx+

∫
Ω

ĝ(x, %hzh)

%h
zh dx = λh

∫
Ω

z2
h dx,

whence

λh

∫
Ω

z2
h dx ≥ 1

and, finally,

λ̂

∫
Ω

z2 dx ≥ 1,

so that z 6= 0.

We also have by Fatou’s lemma

λ̂

∫
Ω

z2 dx− 1 = lim inf
h

∫
Ω

ĝ(x, %hzh)

%h
zh dx ≥

∫
Ω

Dsĝ(x, 0)z2 dx ,
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whence
√
g′(u0)z =

√
Dsĝ(x, 0)z ∈ L2(Ω).

Coming back to the equation satisfied by zh, we introduce the function

ϑ(s) =


1 if |s| ≤ 1,

2− |s| if 1 < |s| < 2,

0 if |s| ≥ 2,

and we test in ϑ
(
u0
k

)
· v ·ϑ (uh), with v ∈ C∞c (Ω), which is strongly convergent to ϑ

(
u0
k

)
v

in W 1,2
0 (Ω).

Since, from Lagrange theorem,

ĝ(x, %hzh)

%h
= g′(u0 + th%hzh)zh = g′(u0 + thuh)zh,

with 0 < th < 1, we have∣∣∣∣ ĝ(x, %hzh)

%h
· ϑ
(u0

k

)
· v · ϑ(uh)

∣∣∣∣ ≤ max
|s|≤2k+2

|g′(s)| · |zh| · |v|

with zh → z in L2(Ω).

Passing to the limit as h→∞, we deduce that

∫
Ω

∇z · ∇
[
ϑ
(u0

k

)
v
]
dx+

∫
Ω

g′(u0)zϑ
(u0

k

)
v dx = λ̂

∫
Ω

zϑ
(u0

k

)
v dx,

for every v ∈ C∞c (Ω). An easy density argument shows that then we can take any

v ∈ W 1,2
0 (Ω) ∩ L∞(Ω).

In particular, if v ∈ W 1,2
0 (Ω) ∩ L∞(Ω) with

√
g′(u0)v ∈ L2(Ω), by (1.1.1) we can pass to

the limit as k →∞, obtaining∫
Ω

∇z · ∇v dx+

∫
Ω

g′(u0)zv dx = λ̂

∫
Ω

zv dx

for every v ∈ W 1,2
0 (Ω) ∩ L∞(Ω) with

√
g′(u0) v ∈ L2(Ω) .

Finally, given v ∈ W 1,2
0 (Ω) with

√
g′(u0) v ∈ L2(Ω), consider vi = Ti(v).
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Testing the previous equation in vi and passing to the limit as i→∞, we obtain∫
Ω

∇z · ∇v dx+

∫
Ω

g′(u0)zv dx = λ̂

∫
Ω

zv dx

for every v ∈ W 1,2
0 (Ω) with

√
g′(u0) v ∈ L2(Ω)

and the proof is complete.

The previous result justifies the next notion.

Definition 2.2.4 A real number λ̂ is said to be an eigenvalue of the linearized problem

(2.2.5)

{
−∆u+ g′(u0)u = λu in Ω ,

u = 0 on ∂Ω ,

if there exists u ∈ W 1,2
0 (Ω) \ {0} such that

√
g′(u0)u ∈ L2(Ω) and∫

Ω

(∇u · ∇v + g′(u0)uv) dx = λ̂

∫
Ω

uv dx

for every v ∈ W 1,2
0 (Ω) with

√
g′(u0) v ∈ L2(Ω) .

Our main result is an adaptation to our setting of a celebrated bifurcation theorem of

Rabinowitz (see e.g. [25, Theorem 11.35]).

Theorem 2.2.6 Let λ̂ be an eigenvalue of (2.2.5). Then one at least of the following

assertions hold:

(i) (λ̂, u0) is not an isolated solution of (2.2.1) in
{
λ̂
}
× L1(Ω);

(ii) for every λ 6= λ̂ in a neighborhood of λ̂ there is a nontrivial solution (λ, uλ) of (2.2.1)

with uλ converging to u0 in L1(Ω) as λ→ λ̂;

(iii) there is a one-sided (right or left) neighborhood of λ̂ such that for every λ 6= λ̂

in the neighborhood there are two distinct nontrivial solutions (λ, u
(1)
λ ) and (λ, u

(2)
λ )

of (2.2.1) with u
(j)
λ converging to u0 in L1(Ω) as λ→ λ̂.

To prove this result we observe that, given λ ∈ R, by Theorem 1.3.2 we have that u is a

solution of (2.2.1) if and only if z = u− u0 satisfies

(2.2.7)


z ∈ W 1,2

0 (Ω) ,

Ĵ(v) ≥ Ĵ(z) + λ

∫
Ω

z(v − z) dx for every v ∈ W 1,2
0 (Ω) .
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Observe also that (λ, 0) is a solution of (2.2.7) for any λ ∈ R and that

Dsĝ(x, s) = g′(u0(x) + s) .

Consider the space H defined as

(2.2.8) H =
{
u ∈ W 1,2

0 (Ω) :
√
Dsĝ(x, 0)u ∈ L2(Ω)

}
⊆ W 1,2

0 (Ω).

It is easily seen that H is a Hilbert space with respect to the scalar product

(u|v)H :=

∫
Ω

∇u · ∇vdx+

∫
Ω

Dsĝ(x, 0)uv dx ,

while {
u 7→

∫
Ω

u2 dx

}
is a smooth quadratic form on H with compact gradient.

Since λ̂ is an eigenvalue of (2.2.5), there exist three linear subspaces H−, H0 and H+

of H such that:

(a) we have

H = H− ⊕H0 ⊕H+ ⊆ W 1,2
0 (Ω)

with dimH− < ∞, 1 ≤ dimH0 < ∞, and the decomposition is orthogonal with

respect to both the scalar product of L2(Ω) and the scalar product ( | )H ;

(b) there exist λ < λ̂ < λ such that∫
Ω

|∇v|2 +Dsĝ(x, 0)v2 dx ≤ λ

∫
Ω

v2 dx ∀v ∈ H− ,∫
Ω

∇u · ∇v +Dsĝ(x, 0)uv dx = λ̂

∫
Ω

uv dx ∀u ∈ H0 , ∀v ∈ H ,∫
Ω

|∇w|2 +Dsĝ(x, 0)w2 dx ≥ λ

∫
Ω

w2 dx ∀w ∈ H+ .

Since Dsĝ(x, 0) ≥ 0, by standard regularity results, we have H− ⊕H0 ⊆ L∞(Ω). We set

Ŷ :=

{
u ∈ L1(Ω) :

∫
Ω

uv dx = 0 for every v ∈ H− ⊕H0

}
.
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Then H+ ⊆ Ŷ , Ŷ is closed in L1(Ω) and we have

L1(Ω) = H− ⊕H0 ⊕ Ŷ .

Let P̂ : L1(Ω)→ H− ⊕H0 the associated projection.

We also have

W 1,2
0 (Ω) = H− ⊕H0 ⊕ Y ,

where Y = Ŷ ∩ W 1,2
0 (Ω), and P = P̂

∣∣
W 1,2

0 (Ω)
: W 1,2

0 (Ω) → H− ⊕ H0 is the associated

projection, which is continuous with respect to the L1(Ω) topology.

Given λ ∈ R, introduce the functional Îλ : W 1,2
0 (Ω)→]−∞,+∞] defined as

Îλ(u) =
1

2

∫
Ω

|∇u|2 dx+

∫
Ω

Ĝ(x, u) dx− λ

2

∫
Ω

u2 dx = Ĵ(u)− λ

2

∫
Ω

u2 dx.

We also set

D(r1, r2) =
{
u ∈ W 1,2

0 (Ω) : ‖∇(Pu)‖2 ≤ r1, ‖∇(u− Pu)‖2 ≤ r2

}

Lemma 2.2.9 There exists r+ > 0 and ε > 0 such that

Îλ

(
1

2
w0 +

1

2
w1

)
≤ 1

2
Îλ(w0) +

1

2
Îλ(w1)− ε ‖∇(w0 − Pw0)−∇(w1 − Pw1)‖2

2 +
1

ε
‖(Pw0)− (Pw1)‖2

2

whenever
∣∣∣λ− λ̂∣∣∣ ≤ r+ and w0, w1 ∈ D(r+, r+).

Proof. By contradiction, let’s consider w0,k and w1,k such that w0,k, w1,k → 0 in W 1,2
0 (Ω)

and λk → λ̂ such that

Îλk

(
1

2
w0,k +

1

2
w1,k

)
>

1

2
Îλk(w0,k) +

1

2
Îλk(w1,k)+

−1

k
‖∇(w0,k − Pw0,k)−∇(w1,k − Pw1,k)‖2

2 + k ‖(Pw0,k)− (Pw1,k)‖2
2 .

Let us set

uk =
1

2
w0,k +

1

2
w1,k ,
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vk =
1

2
(w1,k − w0,k) ,

so that

Îλk(uk) >
1

2
Îλk(uk − vk) +

1

2
Îλk(uk + vk)−

4

k
‖∇(vk − Pvk)‖2

2 + 4k ‖Pvk‖2
2 ,

namely∫
Ω

Ĝ(x, uk) dx >
1

2

∫
Ω

Ĝ(x, uk − vk) dx+
1

2

∫
Ω

Ĝ(x, uk + vk) dx+

(
1

2
− 4

k

)
‖∇vk‖2

2

−4

k
‖∇Pvk‖2

2 +
8

k
(∇vk|∇Pvk)2 −

λk
2

∫
Ω

v2
k dx+ 4k ‖Pvk‖2

2 .

Introduced %k = ‖∇vk‖2 and zk = vk
%k

, up to a subsequence we have zk ⇀ z in W 1,2
0 (Ω).

Dividing both the sides by
1

2
%2
k, from the convexity of Ĝ(x, ·) we obtain

0 ≥

∫
Ω

Ĝ(x, uk) dx−
1

2

∫
Ω

Ĝ(x, uk − %kzk) dx−
1

2

∫
Ω

Ĝ(x, uk + %kzk) dx

1
2
%2
k

>

>

(
1− 8

k

)
− 8

k
‖∇Pzk‖2

2 +
16

k
(∇zk|∇Pzk)2 − λk‖zk‖

2
2 + 8k ‖Pzk‖2

2 .

First of all it follows that Pzk → 0 and, since Pzk → Pz, we infer that Pz = 0, namely

z ∈ Y .

From the inequality

0 ≥

∫
Ω

Ĝ(x, uk) dx−
1

2

∫
Ω

Ĝ(x, uk − %kzk) dx−
1

2

∫
Ω

Ĝ(x, uk + %kzk) dx

1
2
%2
k

>

>

(
1− 8

k

)
− 8

k
‖∇Pzk‖2

2 +
16

k
(∇zk|∇Pzk)2 − λk‖zk‖

2
2

and from Fatou’s lemma and De l’Hopital theorem, we have

−
∫

Ω

Dsĝ(x, 0)z2 dx ≥ 1− λ̂
∫

Ω

z2 dx ≥
∫

Ω

|∇z|2 dx− λ̂
∫

Ω

z2 dx.
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Then ∫
Ω

|∇z|2 dx+

∫
Ω

Dsĝ(x, 0)z2 dx ≤ λ̂

∫
Ω

z2 dx .

On the other hand, since z ∈ Y \ {0}, we have∫
Ω

|∇z|2 dx+

∫
Ω

Dsĝ(x, 0)z2 dx ≥ λ

∫
Ω

z2 dx ,

whence

λ ≤ λ̂,

that is an absurd.

Lemma 2.2.10 There exist r+ > 0 and ε > 0 such that, for every λ ∈ R with∣∣∣λ− λ̂∣∣∣ ≤ r+, the functional{
u 7→ Îλ(u)− ε ‖∇(u− Pu)‖2

2 +
1

ε
‖Pu‖2

2

}

is convex on D(r+, r+).

Proof. Since the functional is lower semicontinuous, it is enough to verify convexity on

convex combinations (1 − t)w0 + tw1 with t = m2−n. Then the assertion follows from

lemma 2.2.9.

It follows that, for every λ ∈ R with
∣∣∣λ− λ̂∣∣∣ ≤ r+ and every v ∈ H− ⊕ H0 with

‖∇v‖2 ≤ r+, there exists one and only one minimum ψλ(v) of
{
w 7→ Îλ(v + w)

}
on

{w ∈ Y : ‖∇w‖2 ≤ r+}. Moreover, we have ψλ(0) = 0. We set also

ϕλ(v) := Îλ(v + ψλ(v)) = min
{
Îλ(v + w) : w ∈ Y , ‖∇w‖2 ≤ r+

}
.

To investigate the properties of ψλ and ϕλ, we introduce an auxiliary decomposition, with

better properties of the finite dimensional part at the expenses of the orthogonality of the

decomposition itself.
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Let {e1, e2, ..., em} be a base of H− and em+1, ..., ek a base of H0.

Introduce the spaces

Hh
−, H

h
0 ,

defined as:

Hh
− = span

{
ϑ
(u0

h

)
e1, . . . , ϑ

(u0

h

)
em

}
,

Hh
0 = span

{
ϑ
(u0

h

)
em+1, . . . , ϑ

(u0

h

)
ek

}
.

Taking into account (1.1.1), it is easily seen that
∥∥ϑ (u0

h

)
ej − ej

∥∥
H
→ 0 as h→ +∞.

Therefore Hh
−⊕Hh

0 is a finite dimensional subspace of H∩L∞(Ω) and, if h is large enough,

we have

L1(Ω) = Hh
− ⊕Hh

0 ⊕ Ŷ ,

W 1,2
0 (Ω) = Hh

− ⊕Hh
0 ⊕ Y ,

H = Hh
− ⊕Hh

0 ⊕H+ .

Accordingly, we denote by P̃ : W 1,2
0 (Ω) → Hh

− ⊕ Hh
0 the associated projection, which is

again continuous with respect to the L1(Ω) topology.

The advantage is that, for every v ∈ Hh
−⊕Hh

0 , we have |u0(x)| ≤ 2h where v(x) 6= 0.

Lemma 2.2.11 There exists r− ∈]0, r+] such that

Îλ(u) > Îλ(z)

whenever
∣∣∣λ− λ̂∣∣∣ ≤ r+, and u, z ∈ D(r−, r+) with ‖∇(u− Pu)‖2 = r+ and z ∈ Hh

−⊕Hh
0 .

In particular, we have ‖∇(z − Pz)‖2 < r+ and ‖∇ψλ(v)‖2 < r+ whenever ‖∇v‖2 ≤ r−.

Proof. By contradiction, consider uk with Puk → 0 and ‖∇(uk − Puk)‖2 = r+,

zk ∈ Hh
− ⊕Hh

0 with Pzk → 0 and λk → λ̂ such that

Îλk(uk) ≤ Îλk(zk).

Up to a subsequence, zk → z and uk ⇀ u. It follows Pz = 0 namely z ∈ Y , whence

z = 0. Therefore, we have zk → 0. Since |u0(x)| ≤ 2h where zk(x) 6= 0, it follows that

Îλk(zk)→ 0.

Moreover, u ∈ Y and ‖∇u‖2 ≤ r+.
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Passing to the lower limit in Îλk(uk) ≤ Îλk(zk), we obtain Îλ̂(u) ≤ 0, hence, from the strict

convexity on Y , u = 0.

Since Ĝ(x, s) ≥ 0, it easily follows that

lim sup
k

∫
Ω

|∇uk|2 dx ≤ 0,

so that uk → 0, that is an absurd.

Now we set

U = {v ∈ H− ⊕H0 : ‖∇v‖2 < r−} .

Theorem 2.2.12 For every λ ∈ R with
∣∣∣λ− λ̂∣∣∣ ≤ r+ and every v ∈ U , we have

ψλ(v) ∈ L∞(Ω) ,

ĝ(x, v + ψλ(v)) ∈ L1(Ω)

and∫
Ω

∇(v + ψλ(v)) · ∇w dx+

∫
Ω

ĝ(x, v + ψλ(v))w dx = λ

∫
Ω

(v + ψλ(v))w dx

for any w ∈ Y with ĝ(x, v + ψλ(v))w ∈ L1(Ω) .

Moreover, ‖ψλ(v)‖∞ is bounded by a uniform constant and the function ϕλ is of class C1

on U with

〈ϕ′λ(z), v〉 =

∫
Ω

∇(z + ψλ(z)) · ∇v dx+

∫
Ω

ĝ (x, z + ψλ(z)) v dx− λ
∫

Ω

(z + ψλ(z)) v dx.

In particular, ϕ′λ(0) = 0.

Proof. We set

Ǐλ(u) =

{
Îλ(u) + 1

ε
‖Pu‖2

2 if u ∈ D(r−, r+) ,

+∞ otherwise ,

ϕ̌λ(v) = min
v+Y

Ǐλ = Ǐλ(v + ψλ(v)) ,

so that Ǐλ is convex by lemma 2.2.10 and

ϕλ(v) = ϕ̌λ(v)− 1

ε
‖v‖2

2 .
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Moreover, ϕ̌λ is finite by lemma 2.2.11, so that by theorem 1.4.1 ϕ̌λ
∣∣
U

is convex and locally

Lipschitz with ∂ϕ̌λ(v) 6= ∅ for any v ∈ U . If α ∈ (H− ⊕H0)′, for every u ∈ W 1,2
0 (Ω) we

have

|〈P ′α, u〉| = |〈α, Pu〉| ≤ ‖α‖‖Pu‖ ≤ C‖α‖‖u‖1 .

It follows that P ′α ∈ L∞(Ω) with

‖P ′α‖∞ ≤ C‖α‖ .

If α ∈ ∂ϕ̌λ(v), we have P ′α ∈ ∂Ǐλ (v + ψλ(v)), hence

P ′α ∈ ∂
{
u 7→ Îλ(u) +

1

ε
‖Pu‖2

2

}
u=v+ψλ(v)

,

as ‖∇v‖2 < r− and ‖∇ψλ(v)‖2 < r+. From theorems 1.2.1 and 1.2.4 we infer that

ĝ(x, v + ψλ(v)) ∈ L1(Ω) and∫
Ω

∇(v + ψλ(v)) · ∇w dx+

∫
Ω

ĝ(x, v + ψλ(v))w dx = λ

∫
Ω

(v + ψλ(v))w dx

+ 〈α, Pw〉 − 2

ε
(v|Pw)2 for any w ∈ W 1,2

0 (Ω) with ĝ(x, v + ψλ(v))w ∈ L1(Ω) .

whence∫
Ω

∇(v + ψλ(v)) · ∇w dx+

∫
Ω

ĝ(x, v + ψλ(v))w dx = λ

∫
Ω

(v + ψλ(v))w dx

for any w ∈ Y with ĝ(x, v + ψλ(v))w ∈ L1(Ω) .

Moreover, we have (v + ψλ(v)) ∈ L∞(Ω), hence ψλ(v) ∈ L∞(Ω), by theorem (1.1.2).

Since ∂Îλ (v + ψλ(v)) contains at most one element by theorem 1.2.4, also ∂Ǐλ (v + ψλ(v))

does the same.

From the injectivity of the map P ′ : (H− ⊕H0)′ → W−1,2(Ω), it follows that also ∂ϕ̌λ(v)

contains at most one element.

We deduce from theorem (1.4.1) that ϕ̌λ is of class C1, so that also ϕλ is of class C1.

In particular we have

〈ϕ′λ(z), v〉 = 〈ϕ̌′λ(z), v〉 − 2

ε
(z|v)2,

i.e.

〈ϕ′λ(z), v〉 =

∫
Ω

∇(z + ψλ(z))∇v dx+

∫
Ω

ĝ (x, z + ψλ(z)) v dx− λ
∫

Ω

(z + ψλ(z)) v dx.
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We set

Ũ =
{
v ∈ Hh

− ⊕Hh
0 : ‖∇Pv‖2 < r−

}
and we define ψ̃λ : Ũ → Y ∩ L∞(Ω) as ψ̃λ(v) := ψλ(Pv) − (v − Pv). It holds

v + ψ̃λ(v) = Pv + ψλ(Pv).

Theorem 2.2.13 The map {(λ, v) 7→ ψ̃λ(v)} is continuous and the map ψ̃λ is Lipschitz

continuous uniformly with respect to λ, when Y is endowed with the W 1,2
0 (Ω) metric.

Proof. We have∫
Ω

∇
(
z + ψ̃λ(z)

)
· ∇
(
ψ̃λ(z + v)− ψ̃λ(z)

)
dx

+

∫
Ω

ĝ
(
x, z + ψ̃λ(z)

)(
ψ̃λ(z + v)− ψ̃λ(z)

)
dx

= λ

∫
Ω

(
z + ψ̃λ(z)

)(
ψ̃λ(z + v)− ψ̃λ(z)

)
dx

and∫
Ω

∇
(
z + v + ψ̃λ(z + v)

)
· ∇
(
ψ̃λ(z + v)− ψ̃λ(z)

)
dx

+

∫
Ω

ĝ
(
x, z + v + ψ̃λ(z + v)

)(
ψ̃λ(z + v)− ψ̃λ(z)

)
dx

= λ

∫
Ω

(
z + v + ψ̃λ(z + v)

)(
ψ̃λ(z + v)− ψ̃λ(z)

)
dx .

We deduce that

∫
Ω

∇v · ∇
[
ψ̃λ(z + v)− ψ̃λ(z)

]
dx+

∫
Ω

∣∣∣∇(ψ̃λ(z + v)− ψ̃λ(z)
)∣∣∣2 dx

+

∫
Ω

[
ĝ
(
x, z + v + ψ̃λ(z + v)

)
− ĝ

(
x, z + ψ̃λ(z)

)](
ψ̃λ(z + v)− ψ̃λ(z)

)
dx

= λ

∫
Ω

v
(
ψ̃λ(z + v)− ψ̃λ(z)

)
dx+ λ

∫
Ω

(
ψ̃λ(z + v)− ψ̃λ(z)

)2

.

By lemma 2.2.10 we obtain
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λ

∫
Ω

v
(
ψ̃λ(z + v)− ψ̃λ(z)

)
dx−

∫
Ω

∇v · ∇
(
ψ̃λ(z + v)− ψ̃λ(z)

)
dx

−
∫

Ω

[
ĝ
(
x, z + v + ψ̃λ(z)

)
− ĝ

(
x, z + ψ̃λ(z)

)](
ψ̃λ(z + v)− ψ̃λ(z)

)
dx =

=

∫
Ω

∣∣∣∇(ψ̃λ(z + v)− ψ̃λ(z)
)∣∣∣2 dx

+

∫
Ω

(
ĝ
(
x, z + v + ψ̃λ(z + v)

)
− ĝ

(
x, z + v + ψ̃λ(z)

))(
ψ̃λ(z + v)− ψ̃λ(z)

)
dx

−λ
∫

Ω

(
ψ̃λ(z + v)− ψ̃λ(z)

)2

dx ≥ 2ε
∥∥∥∇(ψ̃λ(z + v)− ψ̃λ(z)

)∥∥∥2

2
.

There exists 0 < σ < 1 such that

ĝ
(
x, z + v + ψ̃λ(z)

)
− ĝ

(
x, z + ψ̃λ(z)

)
= g

(
u0 + z + v + ψ̃λ(z)

)
− g

(
u0 + z + ψ̃λ(z)

)
= g′

(
u0 + z + ψ̃λ(z) + σv

)
v ,

whence∣∣∣ĝ (x, z + v + ψ̃λ(z)
)
− ĝ

(
x, z + ψ̃λ(z)

)∣∣∣
≤ max{g′(s) : |s| ≤ 2h+ ‖z + ψ̃λ(z)‖∞ + ‖v‖∞}|v| .

It follows

2ε
∥∥∥∇(ψ̃λ(z + v)− ψ̃λ(z)

)∥∥∥2

2
≤ C

∥∥∥∇(ψ̃λ(z + v)− ψ̃λ(z)
)∥∥∥

2
‖∇v‖2 ,

so that the map ψ̃λ is Lipschitz continuous.

Now, to prove that the map {(λ, v) 7→ ψ̃λ(v)} is continuous, it is enough to show

that {λ 7→ ψ̃λ(v)} is continuous for any v, which is easy to verify.

Given z ∈ Ũ and v ∈ Hh
− ⊕Hh

0 , we have

Dsĝ(x, z + ψ̃λ(z))v2 ∈ L1(Ω)

and there is one and only one η in Y with Dsĝ(x, z + ψ̃λ(z))η2 ∈ L1(Ω) and∫
Ω

∇(v + η) · ∇w dx+

∫
Ω

Dsĝ(x, z + ψ̃λ(z))(v + η)w dx

= λ

∫
Ω

(v + η)w dx for any w ∈ Y with Dsĝ(x, z + ψ̃λ(z))w2 ∈ L1(Ω) ,
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as ∫
Ω

∇η · ∇w dx+

∫
Ω

Dsĝ(x, z + ψ̃λ(z))ηw dx− λ
∫

Ω

ηw dx

is a Hilbert scalar product on{
w ∈ Y : Dsĝ(x, z + ψ̃λ(z))w2 ∈ L1(Ω)

}
.

Moreover, the map {v 7→ η} is linear and continuous from Hh
−⊕Hh

0 into W 1,2
0 (Ω). We set

Lzv = η.

Theorem 2.2.14 If (λk) is a sequence convergent to λ in [λ̂ − r+, λ̂ + r+], (zk) is a

sequence convergent to z in Ũ and (vk) is a sequence convergent to 0 in Hh
−⊕Hh

0 , we have

lim
k

ψ̃λk(zk + vk)− ψ̃λk(zk)− Lzvk
‖vk‖

= 0

in the weak topology of W 1,2
0 (Ω).

Proof. Since ψ̃λk is uniformly locally Lipschitz, we have that, up to a subsequence,

ψ̃λk(zk + vk)− ψ̃λk(zk)− Lzvk
‖vk‖

⇀ ξ

in the weak topology of W 1,2
0 (Ω). We know that ξ ∈ Y and we have to prove that ξ = 0.

If we set ηk = Lzvk, for every w ∈ Y with

ĝ
(
x, zk + vk + ψ̃λk(zk + vk)

)
w ∈ L1(Ω) , ĝ

(
x, zk + ψ̃λk(zk)

)
w ∈ L1(Ω) ,

Dsĝ(x, z + ψ̃λ(z))w2 ∈ L1(Ω) ,

we have∫
Ω

∇
[
zk + vk + ψ̃λk(zk + vk)

]
· ∇w dx+

∫
Ω

ĝ
(
x, zk + vk + ψ̃λk(zk + vk)

)
w dx

−λk
∫

Ω

(
zk + vk + ψ̃λk(zk + vk)

)
w dx = 0,∫

Ω

∇
[
zk + ψ̃λk(zk)

]
·∇w dx+

∫
Ω

ĝ
(
x, zk + ψ̃λk(zk)

)
w dx−λk

∫
Ω

(
zk + ψ̃λk(zk)

)
w dx = 0,
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∫
Ω

∇ (vk + ηk) · ∇w dx+

∫
Ω

Dsĝ
(
x, z + ψ̃λ(z)

)
(vk + ηk)w dx− λ

∫
Ω

(vk + ηk)w dx = 0.

In particular, for every w ∈ Y such that u0 ∈ L∞({w 6= 0}), it follows∫
Ω

∇
[
ψ̃λk(zk + vk)− ψ̃λk(zk)− ηk

]
· ∇w dx

+

∫
Ω

[
ĝ
(
x, zk + vk + ψ̃λk(zk + vk)

)
− ĝ

(
x, zk + ψ̃λk(zk)

)
−Dsĝ(x, z + ψ̃λ(z))(vk + ηk)

]
w dx

−λk
∫

Ω

(
ψ̃λk(zk + vk)− ψ̃λk(zk)− ηk

)
w dx− (λk − λ)

∫
Ω

(vk + ηk)w dx = 0.

On the other hand, by Lagrange theorem we have

ĝ
(
x, zk + vk + ψ̃λk(zk + vk)

)
− ĝ

(
x, zk + ψ̃λk(zk)

)
−Dsĝ(x, z + ψ̃λ(z))(vk + ηk)

= Dsĝ(x, %k)
[
vk + ψ̃λk(zk + vk)− ψ̃λk(zk)

]
−Dsĝ(x, z + ψ̃λ(z))(vk + ηk)

= Dsĝ(x, %k)
[
ψ̃λk(zk + vk)− ψ̃λk(zk)− ηk

]
+
[
Dsĝ(x, %k)−Dsĝ(x, z + ψ̃λ(z))

]
(vk + ηk),

where

%k = zk + ψ̃λk(zk) + σk

(
vk + ψ̃λk(zk + vk)− ψ̃λk(zk)

)
,

with σk ∈]0, 1[.

After dividing both sides by ‖vk‖ and passing to the limit as k → +∞, we obtain∫
Ω

∇ξ · ∇w dx+

∫
Ω

Dsĝ(x, z + ψ̃λ(z))ξw dx− λ
∫

Ω

ξw dx = 0.

Now we choose as test function
[
ϑ(u0

h
)ξ − P̃

(
ϑ(u0

h
)ξ
)]

. Consider, in particular,∫
Ω

Dsĝ(x, z + ψ̃λ(z))ξ
[
ϑ(
u0

h
)ξ − P̃ (ϑ(

u0

h
)ξ)
]
dx,

=

∫
Ω

Dsĝ(x, z + ψ̃λ(z))ϑ(
u0

h
)ξ2 dx−

∫
Ω

Dsĝ(x, z + ψ̃λ(z))ξP̃
[
ϑ(
u0

h
)ξ
]
dx.

Passing to the limit as h→ +∞ and taking into account (1.1.1) we get, from Beppo Levi

and Lebesgue theorem, ∫
Ω

Dsĝ(x, z + ψ̃λ(z))ξ2 dx.
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Therefore, we have Dsĝ(x, z + ψ̃λ(z))ξ2 ∈ L1(Ω) and∫
Ω

|∇ξ|2 dx+

∫
Ω

Dsĝ(x, z + ψ̃λ(z))ξ2 dx− λ
∫

Ω

ξ2 dx = 0.

We deduce that ξ = 0.

Now we define also ϕ̃ : Ũ → R as

ϕ̃λ(v) = ϕλ(Pv) .

Theorem 2.2.15 ϕ̃λ is of class C1 with

〈ϕ̃′λ(z), v〉 =

∫
Ω

∇(z + ψ̃λ(z)) · ∇v dx+

∫
Ω

ĝ(x, z + ψ̃λ(z))v dx− λ
∫

Ω

(z + ψ̃λ(z))v dx .

In particular, ϕ̃′λ(0) = 0.

Proof. Since v − Pv ∈ Y ∩ L∞(Ω), we have

〈ϕ̃′λ(z), v〉 = 〈ϕ′λ(Pz), Pv〉

=

∫
Ω

∇(Pz +ψλ(Pz)) · ∇Pv dx+

∫
Ω

ĝ(x, Pz +ψλ(Pz))Pv dx− λ
∫

Ω

(Pz +ψλ(Pz))Pv dx

=

∫
Ω

∇(Pz + ψλ(Pz)) · ∇v dx+

∫
Ω

ĝ(x, Pz + ψλ(Pz))v dx− λ
∫

Ω

(Pz + ψλ(Pz))v dx

=

∫
Ω

∇(z + ψ̃λ(z)) · ∇v dx+

∫
Ω

ĝ(x, z + ψ̃λ(z))v dx− λ
∫

Ω

(z + ψ̃λ(z))v dx.

Theorem 2.2.16 The function ϕ̃λ is of class C2 with

〈ϕ̃λ ′′(z)v, v̂〉 =

∫
Ω

∇(v + Lzv) · ∇v̂ dx+

∫
Ω

Dsĝ(x, u)(v + Lzv)v̂ dx− λ
∫

Ω

(v + Lzv)v̂ dx,

where u = z + ψ̃λ(z). Moreover the map {(λ, z) 7→ ϕ̃λ
′′(z)} is continuous.
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Proof. Define

L̃z : Hh
− ⊕Hh

0 → (Hh
− ⊕Hh

0 )′

as

〈L̃zv, v̂〉 =

∫
Ω

∇(v + Lzv) · ∇v̂ dx+

∫
Ω

Dsĝ(x, u)(v + Lzv)v̂ dx− λ
∫

Ω

(v + Lzv)v̂ dx .

Then L̃z is linear and of course continuous.

Fix z ∈ Ũ and v̂ ∈ Hh
− ⊕ Hh

0 . Then consider a sequence (zk) convergent to z in Ũ

and a sequence (vk) convergent to 0 in Hh
− ⊕Hh

0 . If we set ηk = Lzvk, we have

〈ϕ̃′λ(zk + vk)− ϕ̃′λ(zk)− L̃zvk, v̂〉
‖vk‖

=

∫
Ω

∇
[
ψ̃λ(zk + vk)− ψ̃λ(zk)− ηk

]
· ∇v̂ dx

‖vk‖
−
λ

∫
Ω

[
ψ̃λ(zk + vk)− ψ̃λ(zk)− ηk

]
v̂ dx

‖vk‖

+

∫
Ω

[
ĝ
(
x, zk + vk + ψ̃λ(zk + vk)

)
− ĝ

(
x, zk + ψ̃λ(zk)

)
−Dsĝ(x, u) (vk + ηk)

]
v̂ dx

‖vk‖
.

By theorem 2.2.14 we have

lim
k

∫
Ω

∇
[
ψ̃λ(zk + vk)− ψ̃λ(zk)− ηk

]
· ∇v̂ dx

‖vk‖
= lim

k

∫
Ω

[
ψ̃λ(zk + vk)− ψ̃λ(zk)− ηk

]
v̂ dx

‖vk‖
= 0 .

On the other hand, by Lagrange theorem there exists %k such that[
ĝ
(
x, zk + vk + ψ̃λ(zk + vk)

)
− ĝ(x, zk + ψ̃λ(zk))

]
=

= Dsĝ(x, %k)
(
vk + ψ̃λ(zk + vk)− ψ̃λ(zk)

)
=

= Dsĝ(x, %k) (vk + ηk) +Dsĝ(x, %k)
(
ψ̃λ(zk + vk)− ψ̃λ(zk)− ηk

)
.

Since u0 is bounded where v̂ 6= 0 and since ψ̃λ is also bounded in L∞(Ω), we get

lim
k

∫
Ω

Dsĝ(x, %k)
(
ψ̃λ(zk + vk)− ψ̃λ(zk)− ηk

)
v̂ dx

‖vk‖
= 0 ,
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lim
k

∫
Ω

[Dsĝ(x, %k)−Dsĝ(x, u)] (vk + ηk) v̂ dx

‖vk‖
= 0,

and the assertion follows.

Now we come back to the decompositions

H = H− ⊕H0 ⊕H+ = Hh
− ⊕Hh

0 ⊕H+ .

Theorem 2.2.17 The function ϕλ is of class C2 with

〈ϕλ ′′(0)v, v〉 =

∫
Ω

|∇v|2 dx+

∫
Ω

Dsĝ(x, 0)v2 dx− λ
∫

Ω

v2 dx .

Moreover the map {(λ, z) 7→ ϕλ
′′(z)} is continuous.

Proof. Observe that

ϕλ(v) = ϕ̃λ(P̃ v) ,

so that ϕλ is of class C2 with

〈ϕ′′λ(z)v, v〉 =
〈
ϕ̃′′λ(P̃ z)P̃ v, P̃ v

〉
.

If we set v+ = v − P̃ v and ṽ = P̃ v, we have

〈ϕ′′λ(0)v, v〉 = 〈ϕ̃′′λ(0)ṽ, v − v+〉

=

∫
Ω

∇(ṽ + L0ṽ) · ∇(v − v+) dx+

∫
Ω

Dsĝ(x, 0)(ṽ + L0ṽ)(v − v+) dx

− λ
∫

Ω

(ṽ + L0ṽ)(v − v+) dx

=

∫
Ω

∇(ṽ + L0ṽ) · ∇v dx+

∫
Ω

Dsĝ(x, 0)(ṽ + L0ṽ)v dx− λ
∫

Ω

(ṽ + L0ṽ)v dx

=

∫
Ω

∇(v − v+ + L0ṽ) · ∇v dx+

∫
Ω

Dsĝ(x, 0)(v − v+ + L0ṽ)v dx

− λ
∫

Ω

(v − v+ + L0ṽ)v dx

=

∫
Ω

|∇v|2 dx+

∫
Ω

Dsĝ(x, 0)v2 dx− λ
∫

Ω

v2 dx .
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We can now define the linear maps

L,K : H− ⊕H0 → (H− ⊕H0)′

such that

〈Lu, v〉 =

∫
Ω

∇u · ∇v dx+

∫
Ω

Dsĝ(x, 0)uv dx,

〈Ku, v〉 =

∫
Ω

uv dx.

The maps L and K satisfy the assumption (b) of theorem (1.5.2) and

ϕ′′λ(0) = L− λK.

On the other hand, if ϕ′λ(z) = 0, we have∫
Ω

∇(z + ψλ(z)) · ∇v dx+

∫
Ω

ĝ(x, z + ψλ(z))v dx = λ

∫
Ω

(z + ψλ(z))v dx ∀v ∈ H− ⊕H0

and also∫
Ω

∇(z+ψλ(z))·∇w dx+

∫
Ω

ĝ(x, z+ψλ(z))w dx = λ

∫
Ω

(z+ψλ(z))w dx ∀w ∈ Y ∩L∞(Ω) ,

whence∫
Ω

∇(z+ψλ(z))·∇v dx+

∫
Ω

ĝ(x, z+ψλ(z))v dx = λ

∫
Ω

(z+ψλ(z))v dx ∀v ∈ W 1,2
0 (Ω)∩L∞(Ω) .

If we set u = z + ψλ(z), from Corollary 1.2.6 we infer that

Ĵ(v) ≥ Ĵ(u) + λ

∫
Ω

u(v − u) dx for every v ∈ W 1,2
0 (Ω) ,

namely that u0 + u is a solution of (2.2.1).

Moreover, if z 6= 0 we have u 6= 0 and if z → 0 we have u→ 0 in W 1,2
0 (Ω).

Then Theorem (2.2.6) follows from theorem (1.5.2).
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