Saccharomyces cerevisiae cells respond to hypotonic stress (HTS) by a cytosolic calcium rise, either generated by an influx of calcium from extracellular medium, when calcium is available, or by a release from intracellular stores in scarcity of extracellular calcium. Calcium release from intracellular compartments is peculiarly inhibited by external calcium in a calcineurin-independent and Cch1-, but not Mid1-, driven manner. HTS-induced calcium release is also negatively regulated by the ER protein Cls2 and involves a poorly characterized protein, FLC2/YAL053W gene product, previously proposed to be required for FAD transport in the ER, albeit, due to its molecular features, it was also previously classified as an ion transporter. A computational analysis revealed that this gene and its three homologs in S. cerevisiae, together with previously identified Schizosaccharomyces pombe pkd2 and Neurospora crassa calcium-related spray protein, belong to a fungal branch of TRP-like ion transporters related to human mucolipin and polycystin 2 calcium transporters. Moreover, disruption of FLC2 gene confers severe sensitivity to Calcofluor white and hyper-activation of the cell wall integrity MAPK cascade, suggesting a role in cell wall maintenance as previously suggested for the fission yeast homolog. Perturbation in cytosolic resting calcium concentration and hyper-activation of calcineurin in exponentially growing cells suggest a role for this transporter in calcium homeostasis in yeast.
Rigamonti, M., Groppi, S., Belotti, F., Ambrosini, R., Filippi, G., Martegani, E., et al. (2015). Hypotonic stress-induced calcium signaling in Saccharomyces cerevisiae involves TRP-like transporters on the endoplasmic reticulum membrane. CELL CALCIUM, 57(2), 57-68 [10.1016/j.ceca.2014.12.003].
Hypotonic stress-induced calcium signaling in Saccharomyces cerevisiae involves TRP-like transporters on the endoplasmic reticulum membrane
RIGAMONTI, MARCOPrimo
Membro del Collaboration Group
;GROPPI, SILVIASecondo
Membro del Collaboration Group
;BELOTTI, FIORELLAMembro del Collaboration Group
;AMBROSINI, ROBERTO;FILIPPI, GIULIA;MARTEGANI, ENZOPenultimo
Membro del Collaboration Group
;TISI, RENATA ANITA
Ultimo
Membro del Collaboration Group
2015
Abstract
Saccharomyces cerevisiae cells respond to hypotonic stress (HTS) by a cytosolic calcium rise, either generated by an influx of calcium from extracellular medium, when calcium is available, or by a release from intracellular stores in scarcity of extracellular calcium. Calcium release from intracellular compartments is peculiarly inhibited by external calcium in a calcineurin-independent and Cch1-, but not Mid1-, driven manner. HTS-induced calcium release is also negatively regulated by the ER protein Cls2 and involves a poorly characterized protein, FLC2/YAL053W gene product, previously proposed to be required for FAD transport in the ER, albeit, due to its molecular features, it was also previously classified as an ion transporter. A computational analysis revealed that this gene and its three homologs in S. cerevisiae, together with previously identified Schizosaccharomyces pombe pkd2 and Neurospora crassa calcium-related spray protein, belong to a fungal branch of TRP-like ion transporters related to human mucolipin and polycystin 2 calcium transporters. Moreover, disruption of FLC2 gene confers severe sensitivity to Calcofluor white and hyper-activation of the cell wall integrity MAPK cascade, suggesting a role in cell wall maintenance as previously suggested for the fission yeast homolog. Perturbation in cytosolic resting calcium concentration and hyper-activation of calcineurin in exponentially growing cells suggest a role for this transporter in calcium homeostasis in yeast.File | Dimensione | Formato | |
---|---|---|---|
Rigamonti-2015-Cell Calcium-AAM.pdf
accesso aperto
Descrizione: Research Article
Tipologia di allegato:
Author’s Accepted Manuscript, AAM (Post-print)
Licenza:
Creative Commons
Dimensione
1.12 MB
Formato
Adobe PDF
|
1.12 MB | Adobe PDF | Visualizza/Apri |
Rigamonti-2015-Cell Calcium-VoR.pdf
Solo gestori archivio
Descrizione: Research Article
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
1.72 MB
Formato
Adobe PDF
|
1.72 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.