We prove some results about the first Steklov eigenvalue $d_1$ of the biharmonic operator in bounded domains. Firstly, we show that Fichera's principle of duality \cite{fichera} may be extended to a wide class of nonsmooth domains. Next, we study the optimization of $d_1$ for varying domains: we disprove a long-standing conjecture, we show some new and unexpected features and we suggest some challenging problems. Finally, we prove several properties of the ball.
Bucur, D., Ferrero, A., & Gazzola, F. (2009). On the first eigenvalue of a fourth order Steklov problem. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 35(1), 103-131 [10.1007/s00526-008-0199-9].
Citazione: | Bucur, D., Ferrero, A., & Gazzola, F. (2009). On the first eigenvalue of a fourth order Steklov problem. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 35(1), 103-131 [10.1007/s00526-008-0199-9]. | |
Tipo: | Articolo in rivista - Articolo scientifico | |
Carattere della pubblicazione: | Scientifica | |
Titolo: | On the first eigenvalue of a fourth order Steklov problem | |
Autori: | Bucur, D; Ferrero, A; Gazzola, F | |
Autori: | ||
Data di pubblicazione: | 2009 | |
Lingua: | English | |
Rivista: | CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s00526-008-0199-9 | |
Appare nelle tipologie: | 01 - Articolo su rivista |