For a semilinear biharmonic Dirichlet problem in the ball with supercritical power-type nonlinearity, we study existence/nonexistence, regularity and stability of radial positive minimal solutions. Moreover, qualitative properties, and in particular the precise asymptotic behaviour near x = 0 for (possibly existing) singular radial solutions, are deduced. Dynamical systems arguments and a suitable Lyapunov (energy) function are employed. © 2006 Elsevier Inc. All rights reserved.
Ferrero, A., & Grunau, H. (2007). The Dirichlet problem for supercritical biharmonic equations with power-type nonlinearity. JOURNAL OF DIFFERENTIAL EQUATIONS, 234, 582-606.
Citazione: | Ferrero, A., & Grunau, H. (2007). The Dirichlet problem for supercritical biharmonic equations with power-type nonlinearity. JOURNAL OF DIFFERENTIAL EQUATIONS, 234, 582-606. |
Tipo: | Articolo in rivista - Articolo scientifico |
Carattere della pubblicazione: | Scientifica |
Titolo: | The Dirichlet problem for supercritical biharmonic equations with power-type nonlinearity |
Autori: | Ferrero, A; Grunau, HCh |
Autori: | |
Data di pubblicazione: | 2007 |
Lingua: | English |
Rivista: | JOURNAL OF DIFFERENTIAL EQUATIONS |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/j.jde.2006.11.007 |
Appare nelle tipologie: | 01 - Articolo su rivista |