Consider the p-system describing the subsonic flow of a fluid in a pipe with section a = a (x). We prove that the resulting Cauchy problem generates a Lipschitz semigroup, provided the total variation of the initial datum and the oscillation of a are small. An explicit estimate on the bound of the total variation of a is provided, showing that at lower fluid speeds, higher total variations of a are acceptable. An example shows that the bound on TV (a) is mandatory, for otherwise the total variation of the solution may grow arbitrarily.
Colombo, R., & Marcellini, F. (2010). Smooth and discontinuous junctions in the p-system. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 361(2), 440-456 [10.1016/j.jmaa.2009.07.022].
Citazione: | Colombo, R., & Marcellini, F. (2010). Smooth and discontinuous junctions in the p-system. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 361(2), 440-456 [10.1016/j.jmaa.2009.07.022]. | |
Tipo: | Articolo in rivista - Articolo scientifico | |
Carattere della pubblicazione: | Scientifica | |
Presenza di un coautore afferente ad Istituzioni straniere: | No | |
Titolo: | Smooth and discontinuous junctions in the p-system | |
Autori: | Colombo, R; Marcellini, F | |
Autori: | MARCELLINI, FRANCESCA (Corresponding) | |
Data di pubblicazione: | 2010 | |
Lingua: | English | |
Rivista: | JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/j.jmaa.2009.07.022 | |
Appare nelle tipologie: | 01 - Articolo su rivista |