We consider the Cauchy problem for an $n\times n$ strictly hyperbolic system of balance laws $u_t+f(u)_x=g(x,u)$, $x\in\mathbb{R}$, $t>0$, $\|g(x,\cdot)\|_{\mathbf{C}^2}\leq\tilde{M}(x)\in\mathbf{L}^1$, endowed with the initial data $u(0,.)=u_o\in\mathbf{L}^1\cap\mathbf{BV}(\mathbb{R};\mathbb{R}^n)$. Each characteristic field is assumed to be genuinely nonlinear or linearly degenerate and nonresonant with the source, i.e., $|\lambda_i(u)|\geq c>0$ for all $i\in\{1,\dots,n\}$. Assuming that the $\mathbf{L}^1$ norms of $\|g(x,\cdot)\|_{\mathbf{C}^1}$ and $\|u_o\|_{\mathbf{BV}(\mathbb{R})}$ are small enough, we prove the existence and uniqueness of global entropy solutions of bounded total variation extending the result in [D.~Amadori, L.~Gosse, and G.~Guerra, {\it Arch.~Ration.~Mech.~Anal.}, 162 (2002), pp.~327--366] to unbounded (in $\mathbf{L}^\infty$) sources. Furthermore, we apply this result to the fluid flow in a pipe with discontinuous cross sectional area, showing existence and uniqueness of the underlying semigroup.
Guerra, G., Marcellini, F., Schleper, V. (2009). Balance laws with integrable unbounded sources. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 41(3), 1164-1189 [10.1137/080735436].
Balance laws with integrable unbounded sources
GUERRA, GRAZIANO;MARCELLINI, FRANCESCA;
2009
Abstract
We consider the Cauchy problem for an $n\times n$ strictly hyperbolic system of balance laws $u_t+f(u)_x=g(x,u)$, $x\in\mathbb{R}$, $t>0$, $\|g(x,\cdot)\|_{\mathbf{C}^2}\leq\tilde{M}(x)\in\mathbf{L}^1$, endowed with the initial data $u(0,.)=u_o\in\mathbf{L}^1\cap\mathbf{BV}(\mathbb{R};\mathbb{R}^n)$. Each characteristic field is assumed to be genuinely nonlinear or linearly degenerate and nonresonant with the source, i.e., $|\lambda_i(u)|\geq c>0$ for all $i\in\{1,\dots,n\}$. Assuming that the $\mathbf{L}^1$ norms of $\|g(x,\cdot)\|_{\mathbf{C}^1}$ and $\|u_o\|_{\mathbf{BV}(\mathbb{R})}$ are small enough, we prove the existence and uniqueness of global entropy solutions of bounded total variation extending the result in [D.~Amadori, L.~Gosse, and G.~Guerra, {\it Arch.~Ration.~Mech.~Anal.}, 162 (2002), pp.~327--366] to unbounded (in $\mathbf{L}^\infty$) sources. Furthermore, we apply this result to the fluid flow in a pipe with discontinuous cross sectional area, showing existence and uniqueness of the underlying semigroup.File | Dimensione | Formato | |
---|---|---|---|
Balance_laws_with_integrable_unbounded_sources.pdf
accesso aperto
Tipologia di allegato:
Other attachments
Dimensione
315.91 kB
Formato
Adobe PDF
|
315.91 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.