Context. Forthcoming experiments will enable us to determine tomographic shear spectra at a high precision level. Most predictions about them have until now been based on algorithms yielding the expected linear and non-linear spectrum of density fluctuations. Even when simulations have been used, so-called Halofit predictions on fairly large scales have been needed. Aims. We wish to go beyond this limitation. Methods. We perform N-body and hydrodynamical simulations within a sufficiently large cosmological volume to allow a direct connection between simulations and linear spectra. While covering large length-scales, the simulation resolution is good enough to allow us to explore the high-ℓ harmonics of the cosmic shear (up to ℓ ∼ 50 000), well into the domain where baryon physics becomes important. We then compare shear spectra in the absence and in presence of various kinds of baryon physics, such as radiative cooling, star formation, and supernova feedback in the form of galactic winds. Results. We distinguish several typical properties of matter fluctuation spectra in the different simulations and test their impact on shear spectra. Conclusions. We compare our outputs with those obtainable using approximate expressions for non-linear spectra, and identify substantial discrepancies even between our results and those of purely N-body results. Our simulations and the treatment of their outputs however enable us, for the first time, to obtain shear results that are fully independent of any approximate expression, also in the high-ℓ range, where we need to incorporate a non-linear power spectrum of density perturbations and the effects of baryon physics. This will allow us to fully exploit the cosmological information contained in future high-sensitivity cosmic shear surveys, exploring the physics of cosmic shears via weak lensing measurements. © 2012 ESO.

Casarini, L., Bonometto, S., Borgani, S., Dolag, K., Murante, G., Mezzetti, M., et al. (2012). Tomographic weak-lensing shear spectra from large N-body and hydrodynamical simulations. ASTRONOMY & ASTROPHYSICS, 542 [10.1051/0004-6361/201118617].

Tomographic weak-lensing shear spectra from large N-body and hydrodynamical simulations

CASARINI, LUCIANO
;
BONOMETTO, SILVIO;LA VACCA, GIUSEPPE
Ultimo
2012

Abstract

Context. Forthcoming experiments will enable us to determine tomographic shear spectra at a high precision level. Most predictions about them have until now been based on algorithms yielding the expected linear and non-linear spectrum of density fluctuations. Even when simulations have been used, so-called Halofit predictions on fairly large scales have been needed. Aims. We wish to go beyond this limitation. Methods. We perform N-body and hydrodynamical simulations within a sufficiently large cosmological volume to allow a direct connection between simulations and linear spectra. While covering large length-scales, the simulation resolution is good enough to allow us to explore the high-ℓ harmonics of the cosmic shear (up to ℓ ∼ 50 000), well into the domain where baryon physics becomes important. We then compare shear spectra in the absence and in presence of various kinds of baryon physics, such as radiative cooling, star formation, and supernova feedback in the form of galactic winds. Results. We distinguish several typical properties of matter fluctuation spectra in the different simulations and test their impact on shear spectra. Conclusions. We compare our outputs with those obtainable using approximate expressions for non-linear spectra, and identify substantial discrepancies even between our results and those of purely N-body results. Our simulations and the treatment of their outputs however enable us, for the first time, to obtain shear results that are fully independent of any approximate expression, also in the high-ℓ range, where we need to incorporate a non-linear power spectrum of density perturbations and the effects of baryon physics. This will allow us to fully exploit the cosmological information contained in future high-sensitivity cosmic shear surveys, exploring the physics of cosmic shears via weak lensing measurements. © 2012 ESO.
Articolo in rivista - Articolo scientifico
Cosmology: theory; Dark energy; Dark matter; Gravitational lensing: weak; Astronomy and Astrophysics; Space and Planetary Science
English
Casarini, L., Bonometto, S., Borgani, S., Dolag, K., Murante, G., Mezzetti, M., et al. (2012). Tomographic weak-lensing shear spectra from large N-body and hydrodynamical simulations. ASTRONOMY & ASTROPHYSICS, 542 [10.1051/0004-6361/201118617].
Casarini, L; Bonometto, S; Borgani, S; Dolag, K; Murante, G; Mezzetti, M; Tornatore, L; LA VACCA, G
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/73358
Citazioni
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 18
Social impact